IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1260-d505678.html
   My bibliography  Save this article

Homeowners’ Willingness to Make Investment in Energy Efficiency Retrofit of Residential Buildings in China and Its Influencing Factors

Author

Listed:
  • Ce Huang

    (School of Architecture, Tianjin University, Tianjin 300072, China)

  • Jiefang Ma

    (Faculty of Architecture and the Built Environment, Delft University of Technology, 2628BL Delft, The Netherlands)

  • Kun Song

    (School of Architecture, Tianjin University, Tianjin 300072, China)

Abstract

In China, energy efficiency retrofit of residential buildings is entering a new stage in which homeowners are the main subject. In order to investigate homeowners’ willingness to invest and to analyze its influencing factors, interviews and a questionnaire survey were conducted in central Tianjin, China. The results show that homeowners have a certain willingness to invest in energy efficiency retrofit but that their willingness to pay (WTP) is far from enough to cover the total cost. Among the influencing factors, the homeowner’s age, education level, and retrofit experience as well as the age and floor area of their home are significantly related to their WTP. The reasons for the impact of these factors are further discussed, including the influences of China’s previous housing policies and retrofit policies. Policy recommendations to promote investment by homeowners are suggested based on the findings.

Suggested Citation

  • Ce Huang & Jiefang Ma & Kun Song, 2021. "Homeowners’ Willingness to Make Investment in Energy Efficiency Retrofit of Residential Buildings in China and Its Influencing Factors," Energies, MDPI, vol. 14(5), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1260-:d:505678
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1260/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1260/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nair, Gireesh & Gustavsson, Leif & Mahapatra, Krushna, 2010. "Factors influencing energy efficiency investments in existing Swedish residential buildings," Energy Policy, Elsevier, vol. 38(6), pages 2956-2963, June.
    2. Linden, Anna-Lisa & Carlsson-Kanyama, Annika & Eriksson, Bjorn, 2006. "Efficient and inefficient aspects of residential energy behaviour: What are the policy instruments for change?," Energy Policy, Elsevier, vol. 34(14), pages 1918-1927, September.
    3. Barr, Stewart & Gilg, Andrew W & Ford, Nicholas, 2005. "The household energy gap: examining the divide between habitual- and purchase-related conservation behaviours," Energy Policy, Elsevier, vol. 33(11), pages 1425-1444, July.
    4. Kenneth Gillingham & Richard G. Newell & Karen Palmer, 2009. "Energy Efficiency Economics and Policy," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 597-620, September.
    5. Mahapatra, Krushna & Gustavsson, Leif, 2008. "An adopter-centric approach to analyze the diffusion patterns of innovative residential heating systems in Sweden," Energy Policy, Elsevier, vol. 36(2), pages 577-590, February.
    6. Murphy, Lorraine, 2014. "The influence of energy audits on the energy efficiency investments of private owner-occupied households in the Netherlands," Energy Policy, Elsevier, vol. 65(C), pages 398-407.
    7. Dillman, Don A. & Rosa, Eugene A. & Dillman, Joye J., 1983. "Lifestyle and home energy conservation in the United States: the poor accept lifestyle cutbacks while the wealthy invest in conservation," Journal of Economic Psychology, Elsevier, vol. 3(3-4), pages 299-315, September.
    8. Pettifor, H. & Wilson, C. & Chryssochoidis, G., 2015. "The appeal of the green deal: Empirical evidence for the influence of energy efficiency policy on renovating homeowners," Energy Policy, Elsevier, vol. 79(C), pages 161-176.
    9. Collins, Matthew & Curtis, John, 2018. "Willingness-to-pay and free-riding in a national energy efficiency retrofit grant scheme," Energy Policy, Elsevier, vol. 118(C), pages 211-220.
    10. Chanoch Friedman & Nir Becker & Evyatar Erell, 2018. "Retrofitting residential building envelopes for energy efficiency: motivations of individual homeowners in Israel," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 61(10), pages 1805-1827, August.
    11. Xu, Peng & Xu, Tengfang & Shen, Pengyuan, 2013. "Energy and behavioral impacts of integrative retrofits for residential buildings: What is at stake for building energy policy reforms in northern China?," Energy Policy, Elsevier, vol. 52(C), pages 667-676.
    12. Banfi, Silvia & Farsi, Mehdi & Filippini, Massimo & Jakob, Martin, 2008. "Willingness to pay for energy-saving measures in residential buildings," Energy Economics, Elsevier, vol. 30(2), pages 503-516, March.
    13. Liu, Wenling & Zhang, Jinyun & Bluemling, Bettina & Mol, Arthur P.J. & Wang, Can, 2015. "Public participation in energy saving retrofitting of residential buildings in China," Applied Energy, Elsevier, vol. 147(C), pages 287-296.
    14. Nauleau, Marie‐Laure, 2014. "Free‐Riding in Tax Credits For Home Insulation in France: An Econometric Assessment Using Panel Data," Energy: Resources and Markets 165796, Fondazione Eni Enrico Mattei (FEEM).
    15. Marie-Laure Nauleau, 2014. "Free-Riding in Tax Credits For Home Insulation in France: An Econometric Assessment Using Panel Data," Working Papers 2014.26, Fondazione Eni Enrico Mattei.
    16. Poortinga, Wouter & Steg, Linda & Vlek, Charles & Wiersma, Gerwin, 2003. "Household preferences for energy-saving measures: A conjoint analysis," Journal of Economic Psychology, Elsevier, vol. 24(1), pages 49-64, February.
    17. Dongyan, Li, 2009. "Fiscal and tax policy support for energy efficiency retrofit for existing residential buildings in China's northern heating region," Energy Policy, Elsevier, vol. 37(6), pages 2113-2118, June.
    18. Kwak, So-Yoon & Yoo, Seung-Hoon & Kwak, Seung-Jun, 2010. "Valuing energy-saving measures in residential buildings: A choice experiment study," Energy Policy, Elsevier, vol. 38(1), pages 673-677, January.
    19. Jakob, Martin, 2006. "Marginal costs and co-benefits of energy efficiency investments: The case of the Swiss residential sector," Energy Policy, Elsevier, vol. 34(2), pages 172-187, January.
    20. Achtnicht, Martin, 2010. "Do environmental benefits matter? A choice experiment among house owners in Germany," ZEW Discussion Papers 10-094, ZEW - Leibniz Centre for European Economic Research.
    21. Trotta, Gianluca, 2018. "The determinants of energy efficient retrofit investments in the English residential sector," Energy Policy, Elsevier, vol. 120(C), pages 175-182.
    22. Yan, Ding & Zhe, Tian & Yong, Wu & Neng, Zhu, 2011. "Achievements and suggestions of heat metering and energy efficiency retrofit for existing residential buildings in northern heating regions of China," Energy Policy, Elsevier, vol. 39(9), pages 4675-4682, September.
    23. Nauleau, Marie-Laure, 2014. "Free-riding on tax credits for home insulation in France: An econometric assessment using panel data," Energy Economics, Elsevier, vol. 46(C), pages 78-92.
    24. Marie-Laure Nauleau, 2014. "Free-riding on tax credits for home insulation in France: An econometric assessment using panel data," Post-Print hal-01083206, HAL.
    25. Anna Alberini, Silvia Banfi, and Celine Ramseier, 2013. "Energy Efficiency Investments in the Home: Swiss Homeowners and Expectations about Future Energy Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    26. Wilson, C. & Pettifor, H. & Chryssochoidis, G., 2018. "Quantitative modelling of why and how homeowners decide to renovate energy efficiently," Applied Energy, Elsevier, vol. 212(C), pages 1333-1344.
    27. Urge-Vorsatz, Diana & Hauff, Jochen, 2001. "Drivers of market transformation: analysis of the Hungarian lighting success story," Energy Policy, Elsevier, vol. 29(10), pages 801-810, August.
    28. Phillips, Yvonne, 2012. "Landlords versus tenants: Information asymmetry and mismatched preferences for home energy efficiency," Energy Policy, Elsevier, vol. 45(C), pages 112-121.
    29. Chih-Pei HU & Yan-Yi CHANG, 2017. "John W. Creswell, Research Design: Qualitative, Quantitative, and Mixed Methods Approaches," Journal of Social and Administrative Sciences, KSP Journals, vol. 4(2), pages 205-207, June.
    30. Brounen, Dirk & Kok, Nils, 2011. "On the economics of energy labels in the housing market," Journal of Environmental Economics and Management, Elsevier, vol. 62(2), pages 166-179, September.
    31. Cameron, Trudy Ann, 1985. "A Nested Logit Model of Energy Conservation Activity by Owners of Existing Single Family Dwellings," The Review of Economics and Statistics, MIT Press, vol. 67(2), pages 205-211, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiefang Ma & Queena Kun Qian & Henk Visscher & Kun Song, 2022. "Barriers for Homeowners in Decisions to Undertake Government-Led Energy Efficiency Renovation Projects in Northern China," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    2. Yu Cao & Cong Xu & Syahrul Nizam Kamaruzzaman & Nur Mardhiyah Aziz, 2022. "A Systematic Review of Green Building Development in China: Advantages, Challenges and Future Directions," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    3. Jiefang Ma & Queena Kun Qian & Henk Visscher & Kun Song, 2021. "Homeowners’ Participation in Energy Efficient Renovation Projects in China’s Northern Heating Region," Sustainability, MDPI, vol. 13(16), pages 1-37, August.
    4. Seif Khiati & Rafik Belarbi & Ammar Yahia, 2023. "Sustainable Buildings: A Choice, or a Must for Our Future?," Energies, MDPI, vol. 16(6), pages 1-5, March.
    5. Kaya, O. & Klepacka, A.M. & Florkowski, W.J., 2021. "The role of personal and environmental factors in rural homeowner decision to insulate; an example from Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Łukasz Mazur & Anna Bać & Magdalena Daria Vaverková & Jan Winkler & Aleksandra Nowysz & Eugeniusz Koda, 2022. "Evaluation of the Quality of the Housing Environment Using Multi-Criteria Analysis That Includes Energy Efficiency: A Review," Energies, MDPI, vol. 15(20), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jovović, Ivana & Cirman, Andreja & Hrovatin, Nevenka & Zorić, Jelena, 2023. "Do social capital and housing-related lifestyle foster energy-efficient retrofits? Retrospective panel data evidence from Slovenia," Energy Policy, Elsevier, vol. 179(C).
    2. Henningsen, Geraldine & Wiese, Catharina, 2019. "Do Household Characteristics Really Matter? A Meta-Analysis on the Determinants of Households’ Energy-Efficiency Investments," MPRA Paper 101701, University Library of Munich, Germany.
    3. Drivas, Kyriakos & Rozakis, Stelios & Xesfingi, Sofia, 2019. "The effect of house energy efficiency programs on the extensive and intensive margin of lower-income households’ investment behavior," Energy Policy, Elsevier, vol. 128(C), pages 607-615.
    4. Schlindwein, L.F. & Montalvo, C., 2023. "Energy citizenship: Accounting for the heterogeneity of human behaviours within energy transition," Energy Policy, Elsevier, vol. 180(C).
    5. Giraudet, Louis-Gaëtan, 2020. "Energy efficiency as a credence good: A review of informational barriers to energy savings in the building sector," Energy Economics, Elsevier, vol. 87(C).
    6. Risch, Anna, 2020. "Are environmental fiscal incentives effective in inducing energy-saving renovations? An econometric evaluation of the French energy tax credit," Energy Economics, Elsevier, vol. 90(C).
    7. Wilson, C. & Pettifor, H. & Chryssochoidis, G., 2018. "Quantitative modelling of why and how homeowners decide to renovate energy efficiently," Applied Energy, Elsevier, vol. 212(C), pages 1333-1344.
    8. Collins, Matthew & Curtis, John, 2016. "Willingness-to-Pay and Free-Riding in a National Energy Efficiency Retrofit Grant Scheme: A Revealed Preference Approach," Papers WP551, Economic and Social Research Institute (ESRI).
    9. Drivas, Kyriakos & Rozakis, Stelios & Xesfingi, Sofia, 2018. "The Effect of House Energy Efficiency Costs on the Participation Rate and Investment Amount of Lower-Income Households," MPRA Paper 86590, University Library of Munich, Germany.
    10. Collins, Matthew & Curtis, John, 2018. "Willingness-to-pay and free-riding in a national energy efficiency retrofit grant scheme," Energy Policy, Elsevier, vol. 118(C), pages 211-220.
    11. Fischbacher, Urs & Schudy, Simeon & Teyssier, Sabrina, 2021. "Heterogeneous preferences and investments in energy saving measures," Resource and Energy Economics, Elsevier, vol. 63(C).
    12. Schleich, Joachim & Faure, Corinne & Meissner, Thomas, 2021. "Adoption of retrofit measures among homeowners in EU countries: The effects of access to capital and debt aversion," Energy Policy, Elsevier, vol. 149(C).
    13. Giraudet, Louis-Gaëtan & Bourgeois, Cyril & Quirion, Philippe, 2021. "Policies for low-carbon and affordable home heating: A French outlook," Energy Policy, Elsevier, vol. 151(C).
    14. Charlier, Dorothée, 2015. "Energy efficiency investments in the context of split incentives among French households," Energy Policy, Elsevier, vol. 87(C), pages 465-479.
    15. Nair, Gireesh & Gustavsson, Leif & Mahapatra, Krushna, 2010. "Factors influencing energy efficiency investments in existing Swedish residential buildings," Energy Policy, Elsevier, vol. 38(6), pages 2956-2963, June.
    16. Achtnicht, Martin & Madlener, Reinhard, 2014. "Factors influencing German house owners' preferences on energy retrofits," Energy Policy, Elsevier, vol. 68(C), pages 254-263.
    17. Galassi, Veronica & Madlener, Reinhard, 2017. "The Role of Environmental Concern and Comfort Expectations in Energy Retrofit Decisions," Ecological Economics, Elsevier, vol. 141(C), pages 53-65.
    18. Mills, Bradford & Schleich, Joachim, 2012. "Residential energy-efficient technology adoption, energy conservation, knowledge, and attitudes: An analysis of European countries," Energy Policy, Elsevier, vol. 49(C), pages 616-628.
    19. Ó Broin, Eoin & Nässén, Jonas & Johnsson, Filip, 2015. "Energy efficiency policies for space heating in EU countries: A panel data analysis for the period 1990–2010," Applied Energy, Elsevier, vol. 150(C), pages 211-223.
    20. Feser, Daniel & Bizer, Kilian & Rudolph-Cleff, Annette & Schulze, Joachim, 2016. "Energy audits in a private firm environment: Energy efficiency consultants' cost calculation for innovative technologies in the housing sector," University of Göttingen Working Papers in Economics 275, University of Goettingen, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1260-:d:505678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.