IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v58y2016icp174-185.html
   My bibliography  Save this article

Investment risks in power generation: A comparison of fossil fuel and renewable energy dominated markets

Author

Listed:
  • Tietjen, Oliver
  • Pahle, Michael
  • Fuss, Sabine

Abstract

Due to their high capital intensity, weather dependent renewable energies (RES) such as solar and wind face considerable investment risks in power markets. In addition, their uncertain production volumes also affect the investment risks of other plant types through the impact on power prices and residual demand. Increasing RES shares thus potentially increase overall investment risks in power markets, which many analysts consider to be a potential problem. Against this background, this paper compares investment risks of different technologies in markets with increasing shares of variable RES. It further analyses how generation mixes are affected by these investment risks if the risks are evaluated on a stand-alone basis or in a plant portfolio context of a private firm. For this purpose, a stylized investment and dispatch model is used to conduct Monte Carlo simulations from which risk measures are derived. The results show that capital intensive RES face the highest stand-alone risks, since their profits are most affected by the power price risk. However, the results further indicate that the stand-alone risks of variable RES decrease with their share in the market because of a negative correlation of output and price risk. In addition, RES have a risk benefit in firm plant portfolios in terms of constituting a hedge against losses of fossil fuel plants. This positive portfolio effect, however, rapidly decreases and becomes negative with increasing RES shares in the market.

Suggested Citation

  • Tietjen, Oliver & Pahle, Michael & Fuss, Sabine, 2016. "Investment risks in power generation: A comparison of fossil fuel and renewable energy dominated markets," Energy Economics, Elsevier, vol. 58(C), pages 174-185.
  • Handle: RePEc:eee:eneeco:v:58:y:2016:i:c:p:174-185
    DOI: 10.1016/j.eneco.2016.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988316301773
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2016.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Yun-Hsun & Wu, Jung-Hua, 2008. "A portfolio risk analysis on electricity supply planning," Energy Policy, Elsevier, vol. 36(2), pages 627-641, February.
    2. Kitzing, Lena, 2014. "Risk implications of renewable support instruments: Comparative analysis of feed-in tariffs and premiums using a mean–variance approach," Energy, Elsevier, vol. 64(C), pages 495-505.
    3. Richard Green, 2008. "Carbon Tax or Carbon Permits: The Impact on Generators Risks," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 67-90.
    4. Fagiani, Riccardo & Barquín, Julián & Hakvoort, Rudi, 2013. "Risk-based assessment of the cost-efficiency and the effectivity of renewable energy support schemes: Certificate markets versus feed-in tariffs," Energy Policy, Elsevier, vol. 55(C), pages 648-661.
    5. Green, Richard & Vasilakos, Nicholas, 2010. "Market behaviour with large amounts of intermittent generation," Energy Policy, Elsevier, vol. 38(7), pages 3211-3220, July.
    6. Klessmann, Corinna & Nabe, Christian & Burges, Karsten, 2008. "Pros and cons of exposing renewables to electricity market risks--A comparison of the market integration approaches in Germany, Spain, and the UK," Energy Policy, Elsevier, vol. 36(10), pages 3646-3661, October.
    7. Andreas Ehrenmann & Yves Smeers, 2011. "Generation Capacity Expansion in a Risky Environment: A Stochastic Equilibrium Analysis," Operations Research, INFORMS, vol. 59(6), pages 1332-1346, December.
    8. Lynch, Muireann Á. & Shortt, Aonghus & Tol, Richard S.J. & O'Malley, Mark J., 2013. "Risk–return incentives in liberalised electricity markets," Energy Economics, Elsevier, vol. 40(C), pages 598-608.
    9. Hiroux, C. & Saguan, M., 2010. "Large-scale wind power in European electricity markets: Time for revisiting support schemes and market designs?," Energy Policy, Elsevier, vol. 38(7), pages 3135-3145, July.
    10. Gürkan, G. & Ozdemir, O. & Smeers, Y., 2013. "Generation Capacity Investments in Electricity Markets : Perfect Competition," Discussion Paper 2013-045, Tilburg University, Center for Economic Research.
    11. Awerbuch, Shimon & Yang, Spencer, 2007. "Efficient electricity generating portfolios for Europe: maximising energy security and climate change mitigation," EIB Papers 7/2007, European Investment Bank, Economics Department.
    12. Andreas Schröder & Friedrich Kunz & Jan Meiss & Roman Mendelevitch & Christian von Hirschhausen, 2013. "Current and Prospective Costs of Electricity Generation until 2050," Data Documentation 68, DIW Berlin, German Institute for Economic Research.
    13. Nagl, Stephan, 2013. "The Effect of Weather Uncertainty on the Financial Risk of Green Electricity Producers under Various Renewable Policies," EWI Working Papers 2013-15, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    14. David M. Newbery, 2012. "Reforming Competitive Electricity Markets to Meet Environmental Targets," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    15. Gotham, Douglas & Muthuraman, Kumar & Preckel, Paul & Rardin, Ronald & Ruangpattana, Suriya, 2009. "A load factor based mean-variance analysis for fuel diversification," Energy Economics, Elsevier, vol. 31(2), pages 249-256, March.
    16. Steggals, Will & Gross, Robert & Heptonstall, Philip, 2011. "Winds of change: How high wind penetrations will affect investment incentives in the GB electricity sector," Energy Policy, Elsevier, vol. 39(3), pages 1389-1396, March.
    17. Rodilla, P. & Batlle, C., 2012. "Security of electricity supply at the generation level: Problem analysis," Energy Policy, Elsevier, vol. 40(C), pages 177-185.
    18. Roques, Fabien A. & Newbery, David M. & Nuttall, William J., 2008. "Fuel mix diversification incentives in liberalized electricity markets: A Mean-Variance Portfolio theory approach," Energy Economics, Elsevier, vol. 30(4), pages 1831-1849, July.
    19. Roques, Fabien & Hiroux, Céline & Saguan, Marcelo, 2010. "Optimal wind power deployment in Europe--A portfolio approach," Energy Policy, Elsevier, vol. 38(7), pages 3245-3256, July.
    20. Richard Green & Nicholas Vasilakos, 2011. "The Long-term Impact of Wind Power on Electricity Prices and Generating Capacity," Discussion Papers 11-09, Department of Economics, University of Birmingham.
    21. Delarue, Erik & De Jonghe, Cedric & Belmans, Ronnie & D'haeseleer, William, 2011. "Applying portfolio theory to the electricity sector: Energy versus power," Energy Economics, Elsevier, vol. 33(1), pages 12-23, January.
    22. Sunderkötter, Malte & Weber, Christoph, 2012. "Valuing fuel diversification in power generation capacity planning," Energy Economics, Elsevier, vol. 34(5), pages 1664-1674.
    23. Arnesano, M. & Carlucci, A.P. & Laforgia, D., 2012. "Extension of portfolio theory application to energy planning problem – The Italian case," Energy, Elsevier, vol. 39(1), pages 112-124.
    24. Edenhofer, Ottmar & Hirth, Lion & Knopf, Brigitte & Pahle, Michael & Schlömer, Steffen & Schmid, Eva & Ueckerdt, Falko, 2013. "On the economics of renewable energy sources," Energy Economics, Elsevier, vol. 40(S1), pages 12-23.
    25. Bushnell, James, 2010. "Building Blocks: Investment in Renewable and Non-Renewable Technologies," Staff General Research Papers Archive 31546, Iowa State University, Department of Economics.
    26. EHRENMANN, Andreas & SMEERS, Yves, 2011. "Generation capacity expansion in a risky environment: a stochastic equilibrium analysis," LIDAM Reprints CORE 2379, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    27. Bhattacharya, Anindya & Kojima, Satoshi, 2012. "Power sector investment risk and renewable energy: A Japanese case study using portfolio risk optimization method," Energy Policy, Elsevier, vol. 40(C), pages 69-80.
    28. Jos� I. Mu�oz & Derek W. Bunn, 2013. "Investment risk and return under renewable decarbonization of a power market," Climate Policy, Taylor & Francis Journals, vol. 13(sup01), pages 87-105, March.
    29. Vithayasrichareon, Peerapat & MacGill, Iain F., 2013. "Assessing the value of wind generation in future carbon constrained electricity industries," Energy Policy, Elsevier, vol. 53(C), pages 400-412.
    30. Gross, Robert & Blyth, William & Heptonstall, Philip, 2010. "Risks, revenues and investment in electricity generation: Why policy needs to look beyond costs," Energy Economics, Elsevier, vol. 32(4), pages 796-804, July.
    31. Awerbuch, Shimon, 2000. "Investing in photovoltaics: risk, accounting and the value of new technology," Energy Policy, Elsevier, vol. 28(14), pages 1023-1035, November.
    32. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    33. Robert S. Pindyck, 1999. "The Long-Run Evolutions of Energy Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-27.
    34. Daniel Ziegler & Katrin Schmitz & Christoph Weber, 2012. "Optimal electricity generation portfolios," Computational Management Science, Springer, vol. 9(3), pages 381-399, August.
    35. Mitchell, C. & Bauknecht, D. & Connor, P.M., 2006. "Effectiveness through risk reduction: a comparison of the renewable obligation in England and Wales and the feed-in system in Germany," Energy Policy, Elsevier, vol. 34(3), pages 297-305, February.
    36. Bunn, Derek & Yusupov, Tim, 2015. "The progressive inefficiency of replacing renewable obligation certificates with contracts-for-differences in the UK electricity market," Energy Policy, Elsevier, vol. 82(C), pages 298-309.
    37. Vithayasrichareon, Peerapat & Riesz, Jenny & MacGill, Iain F., 2015. "Using renewables to hedge against future electricity industry uncertainties—An Australian case study," Energy Policy, Elsevier, vol. 76(C), pages 43-56.
    38. Fortin, Ines & Fuss, Sabine & Hlouskova, Jaroslava & Khabarov, Nikolay & Obersteiner, Michael & Szolgayova, Jana, 2007. "An Integrated CVaR and Real Options Approach to Investments in the Energy Sector," Economics Series 209, Institute for Advanced Studies.
    39. de MAERE d'AERTRYCKE, Gauthier & SMEERS, Yves, 2013. "Liquidity risks on power exchanges: a generalized Nash equilibrium model," LIDAM Reprints CORE 2551, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    40. Dominique Finon, 2013. "The transition of the electricity system towards decarbonization: the need for change in the market regime," Climate Policy, Taylor & Francis Journals, vol. 13(sup01), pages 130-145, March.
    41. Dominique Finon, 2013. "The transition of the electricity system towards decarbonization: the need for change in the market regime," Post-Print hal-00834866, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pérez Odeh, Rodrigo & Watts, David & Flores, Yarela, 2018. "Planning in a changing environment: Applications of portfolio optimisation to deal with risk in the electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3808-3823.
    2. Botor, Benjamin & Böcker, Benjamin & Kallabis, Thomas & Weber, Christoph, 2021. "Information shocks and profitability risks for power plant investments – impacts of policy instruments," Energy Economics, Elsevier, vol. 102(C).
    3. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Antelo, Susana Iglesias & Soares, Isabel, 2017. "Energy planning and modern portfolio theory: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 636-651.
    4. Vithayasrichareon, Peerapat & MacGill, Iain F., 2013. "Assessing the value of wind generation in future carbon constrained electricity industries," Energy Policy, Elsevier, vol. 53(C), pages 400-412.
    5. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Iglesias Antelo, Susana & Soares, Isabel, 2015. "The European low-carbon mix for 2030: The role of renewable energy sources in an environmentally and socially efficient approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 49-61.
    6. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    7. Pérez Odeh, Rodrigo & Watts, David & Negrete-Pincetic, Matías, 2018. "Portfolio applications in electricity markets review: Private investor and manager perspective trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 192-204.
    8. Paulino Martinez-Fernandez & Fernando deLlano-Paz & Anxo Calvo-Silvosa & Isabel Soares, 2018. "Pollutant versus non-pollutant generation technologies: a CML-analogous analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 199-212, December.
    9. Jano-Ito, Marco A. & Crawford-Brown, Douglas, 2017. "Investment decisions considering economic, environmental and social factors: An actors' perspective for the electricity sector of Mexico," Energy, Elsevier, vol. 121(C), pages 92-106.
    10. Winkler, Jenny & Gaio, Alberto & Pfluger, Benjamin & Ragwitz, Mario, 2016. "Impact of renewables on electricity markets – Do support schemes matter?," Energy Policy, Elsevier, vol. 93(C), pages 157-167.
    11. de-Llano Paz, Fernando & Antelo, Susana Iglesias & Calvo Silvosa, Anxo & Soares, Isabel, 2014. "The technological and environmental efficiency of the EU-27 power mix: An evaluation based on MPT," Energy, Elsevier, vol. 69(C), pages 67-81.
    12. Lynch & John Curtis, 2016. "The effects of wind generation capacity on electricity prices and generation costs: a Monte Carlo analysis," Applied Economics, Taylor & Francis Journals, vol. 48(2), pages 133-151, January.
    13. Paulino Martinez-Fernandez & Fernando deLlano-Paz & Anxo Calvo-Silvosa & Isabel Soares, 2019. "Assessing Renewable Energy Sources for Electricity (RES-E) Potential Using a CAPM-Analogous Multi-Stage Model," Energies, MDPI, vol. 12(19), pages 1-20, September.
    14. deLlano-Paz, Fernando & Martínez Fernandez, Paulino & Soares, Isabel, 2016. "Addressing 2030 EU policy framework for energy and climate: Cost, risk and energy security issues," Energy, Elsevier, vol. 115(P2), pages 1347-1360.
    15. Inzunza, Andrés & Moreno, Rodrigo & Bernales, Alejandro & Rudnick, Hugh, 2016. "CVaR constrained planning of renewable generation with consideration of system inertial response, reserve services and demand participation," Energy Economics, Elsevier, vol. 59(C), pages 104-117.
    16. Vithayasrichareon, Peerapat & Riesz, Jenny & MacGill, Iain F., 2015. "Using renewables to hedge against future electricity industry uncertainties—An Australian case study," Energy Policy, Elsevier, vol. 76(C), pages 43-56.
    17. Turkson, Charles & Liu, Wenbin & Acquaye, Adolf, 2024. "A data envelopment analysis based evaluation of sustainable energy generation portfolio scenarios," Applied Energy, Elsevier, vol. 363(C).
    18. Sinsel, Simon R. & Yan, Xuqian & Stephan, Annegret, 2019. "Building resilient renewable power generation portfolios: The impact of diversification on investors’ risk and return," Applied Energy, Elsevier, vol. 254(C).
    19. Frank A. Wolak, 2016. "Level versus Variability Trade-offs in Wind and Solar Generation Investments: The Case of California," NBER Working Papers 22494, National Bureau of Economic Research, Inc.
    20. Browne, Oliver & Poletti, Stephen & Young, David, 2015. "How does market power affect the impact of large scale wind investment in 'energy only' wholesale electricity markets?," Energy Policy, Elsevier, vol. 87(C), pages 17-27.

    More about this item

    Keywords

    Power markets; Investment risks; Monte Carlo simulation; Portfolio optimization; Renewable energy;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:58:y:2016:i:c:p:174-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.