IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v112y2022ics0140988322003012.html
   My bibliography  Save this article

Dynamic electricity tariffs: Designing reasonable pricing schemes for private households

Author

Listed:
  • Freier, Julia
  • von Loessl, Victor

Abstract

As a central mechanism for promoting demand-side management, dynamic electricity tariffs are associated with several advantages. By balancing supply and demand, they not only limit the skyrocketing costs of grid stability, but also support the integration of renewable energy generation in electricity grids and thereby reduce CO2 emissions. Furthermore, dynamic rather than constant electricity unit charges are associated with an increase in overall economic efficiency, due to their capability to reflect time-varying costs of electricity provision. Based on the assumption that households’ adoption of dynamic tariffs is efficiency augmenting, we design and analyze dynamic tariffs that aim to create cost savings sufficient to overcome adoption barriers. Taking into account households’ heterogeneity, we demonstrate that EEX spot market prices are inferior to the forecasted share of renewable energy production and the forecasted residual load as a basis for price signals in terms of typical German households’ monetary savings and CO2 emission reductions. Considering general principles of tariff design, we analyze the average short-term price spread as the key tariff characteristic.

Suggested Citation

  • Freier, Julia & von Loessl, Victor, 2022. "Dynamic electricity tariffs: Designing reasonable pricing schemes for private households," Energy Economics, Elsevier, vol. 112(C).
  • Handle: RePEc:eee:eneeco:v:112:y:2022:i:c:s0140988322003012
    DOI: 10.1016/j.eneco.2022.106146
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988322003012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.106146?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Joskow & Jean Tirole, 2007. "Reliability and competitive electricity markets," RAND Journal of Economics, RAND Corporation, vol. 38(1), pages 60-84, March.
    2. Srinivasan, Dipti & Rajgarhia, Sanjana & Radhakrishnan, Bharat Menon & Sharma, Anurag & Khincha, H.P., 2017. "Game-Theory based dynamic pricing strategies for demand side management in smart grids," Energy, Elsevier, vol. 126(C), pages 132-143.
    3. Balta-Ozkan, Nazmiye & Davidson, Rosemary & Bicket, Martha & Whitmarsh, Lorraine, 2013. "Social barriers to the adoption of smart homes," Energy Policy, Elsevier, vol. 63(C), pages 363-374.
    4. Severin Borenstein & James B. Bushnell, 2022. "Do Two Electricity Pricing Wrongs Make a Right? Cost Recovery, Externalities, and Efficiency," American Economic Journal: Economic Policy, American Economic Association, vol. 14(4), pages 80-110, November.
    5. Faruqui, Ahmad & Harris, Dan & Hledik, Ryan, 2010. "Unlocking the [euro]53 billion savings from smart meters in the EU: How increasing the adoption of dynamic tariffs could make or break the EU's smart grid investment," Energy Policy, Elsevier, vol. 38(10), pages 6222-6231, October.
    6. Voulis, Nina & van Etten, Max J.J. & Chappin, Émile J.L. & Warnier, Martijn & Brazier, Frances M.T., 2019. "Rethinking European energy taxation to incentivise consumer demand response participation," Energy Policy, Elsevier, vol. 124(C), pages 156-168.
    7. Arne Risa Hole, 2007. "A comparison of approaches to estimating confidence intervals for willingness to pay measures," Health Economics, John Wiley & Sons, Ltd., vol. 16(8), pages 827-840, August.
    8. Davis, Alexander L. & Krishnamurti, Tamar & Fischhoff, Baruch & Bruine de Bruin, Wandi, 2013. "Setting a standard for electricity pilot studies," Energy Policy, Elsevier, vol. 62(C), pages 401-409.
    9. Severin Borenstein & Stephen Holland, 2005. "On the Efficiency of Competitive Electricity Markets with Time-Invariant Retail Prices," RAND Journal of Economics, The RAND Corporation, vol. 36(3), pages 469-493, Autumn.
    10. Scarpa, R. & Thiene, M. & Train, K., 2008. "Appendix to Utility in WTP space: a tool to address confounding random scale effects in destination choice to the Alps," American Journal of Agricultural Economics APPENDICES, Agricultural and Applied Economics Association, vol. 90(4), pages 1-9, January.
    11. Katrina Jessoe & David Rapson, 2014. "Knowledge Is (Less) Power: Experimental Evidence from Residential Energy Use," American Economic Review, American Economic Association, vol. 104(4), pages 1417-1438, April.
    12. Liebe, Ulf & Glenk, Klaus & von Meyer-Höfer, Marie & Spiller, Achim, 2019. "A web survey application of real choice experiments," Journal of choice modelling, Elsevier, vol. 33(C).
    13. Severin Borenstein, 2005. "The Long-Run Efficiency of Real-Time Electricity Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 93-116.
    14. Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," Energy Policy, Elsevier, vol. 72(C), pages 164-174.
    15. Paul Simshauser and David Downer, 2016. "On the Inequity of Flat-rate Electricity Tariffs," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    16. Gambardella, Christian & Pahle, Michael, 2018. "Time-varying electricity pricing and consumer heterogeneity: Welfare and distributional effects with variable renewable supply," Energy Economics, Elsevier, vol. 76(C), pages 257-273.
    17. David A. Hensher & William H. Greene, 2011. "Valuation of Travel Time Savings in WTP and Preference Space in the Presence of Taste and Scale Heterogeneity," Journal of Transport Economics and Policy, University of Bath, vol. 45(3), pages 505-525, September.
    18. Ottmar Edenhofer & Max Franks & Matthias Kalkuhl, 2021. "Pigou in the 21st Century: a tribute on the occasion of the 100th anniversary of the publication of The Economics of Welfare," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 28(5), pages 1090-1121, October.
    19. Costello, Ken, 2004. "An Observation on Real-Time Pricing: Why Practice Lags Theory," The Electricity Journal, Elsevier, vol. 17(1), pages 21-25.
    20. Buryk, Stephen & Mead, Doug & Mourato, Susana & Torriti, Jacopo, 2015. "Investigating preferences for dynamic electricity tariffs: The effect of environmental and system benefit disclosure," Energy Policy, Elsevier, vol. 80(C), pages 190-195.
    21. Shariatzadeh, Farshid & Mandal, Paras & Srivastava, Anurag K., 2015. "Demand response for sustainable energy systems: A review, application and implementation strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 343-350.
    22. Dupont, B. & De Jonghe, C. & Olmos, L. & Belmans, R., 2014. "Demand response with locational dynamic pricing to support the integration of renewables," Energy Policy, Elsevier, vol. 67(C), pages 344-354.
    23. Scott P. Burger, Christopher R. Knittel, Ignacio J. Perez-Arriaga, Ian Schneider, and Frederik vom Scheidt, 2020. "The Efficiency and Distributional Effects of Alternative Residential Electricity Rate Designs," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    24. Stephen P. Holland & Erin T. Mansur, 2006. "The Short-Run Effects of Time-Varying Prices in Competitive Electricity Markets," The Energy Journal, , vol. 27(4), pages 127-156, October.
    25. Frank A. Wolak, 2011. "Do Residential Customers Respond to Hourly Prices? Evidence from a Dynamic Pricing Experiment," American Economic Review, American Economic Association, vol. 101(3), pages 83-87, May.
    26. Klingler, Anna-Lena, 2017. "Self-consumption with PV+Battery systems: A market diffusion model considering individual consumer behaviour and preferences," Applied Energy, Elsevier, vol. 205(C), pages 1560-1570.
    27. Schlereth, Christian & Skiera, Bernd & Schulz, Fabian, 2018. "Why do consumers prefer static instead of dynamic pricing plans? An empirical study for a better understanding of the low preferences for time-variant pricing plans," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1165-1179.
    28. Feuerriegel, Stefan & Bodenbenner, Philipp & Neumann, Dirk, 2016. "Value and granularity of ICT and smart meter data in demand response systems," Energy Economics, Elsevier, vol. 54(C), pages 1-10.
    29. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
    30. Gottwalt, Sebastian & Ketter, Wolfgang & Block, Carsten & Collins, John & Weinhardt, Christof, 2011. "Demand side management—A simulation of household behavior under variable prices," Energy Policy, Elsevier, vol. 39(12), pages 8163-8174.
    31. Paul L Joskow, 2019. "Challenges for wholesale electricity markets with intermittent renewable generation at scale: the US experience," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 35(2), pages 291-331.
    32. Riccardo Scarpa & Mara Thiene & Kenneth Train, 2008. "Utility in Willingness to Pay Space: A Tool to Address Confounding Random Scale Effects in Destination Choice to the Alps," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(4), pages 994-1010.
    33. Goutam Dutta & Krishnendranath Mitra, 2017. "A literature review on dynamic pricing of electricity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1131-1145, October.
    34. Ahmad Faruqui & Sanem Sergici, 2010. "Household response to dynamic pricing of electricity: a survey of 15 experiments," Journal of Regulatory Economics, Springer, vol. 38(2), pages 193-225, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yuanping & Hou, Lingchun & Cai, Weiguang & Zhou, Zhaoyin & Bian, Jing, 2023. "Exploring the drivers and influencing mechanisms of urban household electricity consumption in China - Based on longitudinal data at the provincial level," Energy, Elsevier, vol. 273(C).
    2. von Loessl, Victor, 2023. "Smart meter-related data privacy concerns and dynamic electricity tariffs: Evidence from a stated choice experiment," Energy Policy, Elsevier, vol. 180(C).
    3. Morell-Dameto, Nicolás & Chaves-Ávila, José Pablo & Gómez San Román, Tomás & Schittekatte, Tim, 2023. "Forward-looking dynamic network charges for real-world electricity systems: A Slovenian case study," Energy Economics, Elsevier, vol. 125(C).
    4. Morell-Dameto, Nicolás & Chaves-Ávila, José Pablo & Gómez San Román, Tomás & Dueñas-Martínez, Pablo & Schittekatte, Tim, 2024. "Network tariff design with flexible customers: Ex-post pricing and a local network capacity market for customer response coordination," Energy Policy, Elsevier, vol. 184(C).
    5. Yuanping Wang & Weiguang Cai & Lingchun Hou & Zhaoyin Zhou & Jing Bian, 2022. "Examining the Provincial-Level Difference and Impact Factors of Urban Household Electricity Consumption in China—Based on the Extended STIRPAT Model," Sustainability, MDPI, vol. 14(16), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nakai, Miwa & von Loessl, Victor & Wetzel, Heike, 2024. "Preferences for dynamic electricity tariffs: A comparison of households in Germany and Japan," Ecological Economics, Elsevier, vol. 223(C).
    2. von Loessl, Victor, 2023. "Smart meter-related data privacy concerns and dynamic electricity tariffs: Evidence from a stated choice experiment," Energy Policy, Elsevier, vol. 180(C).
    3. Clastres, Cédric & Khalfallah, Haikel, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Energy Economics, Elsevier, vol. 98(C).
    4. Cédric Clastres & Haikel Khalfallah, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Post-Print hal-03193212, HAL.
    5. Cédric Clastres & Haikel Khalfallah, 2020. "Retailers' strategies facing demand response and markets interactions," Working Papers hal-03167543, HAL.
    6. Anette Boom & Sebastian Schwenen, 2021. "Is real-time pricing smart for consumers?," Journal of Regulatory Economics, Springer, vol. 60(2), pages 193-213, December.
    7. Strong, Derek Ryan, 2017. "The Early Diffusion of Smart Meters in the US Electric Power Industry," Thesis Commons 7zprk, Center for Open Science.
    8. Katz, Jonas & Andersen, Frits Møller & Morthorst, Poul Erik, 2016. "Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system," Energy, Elsevier, vol. 115(P3), pages 1602-1616.
    9. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
    10. Harold, Jason & Bertsch, Valentin & Fell, Harrison, 2021. "Preferences for curtailable electricity contracts: Can curtailment benefit consumers and the electricity system?," Energy Economics, Elsevier, vol. 102(C).
    11. Christian Gambardella & Michael Pahle & Wolf-Peter Schill, 2016. "Do Benefits from Dynamic Tariffing Rise? Welfare Effects of Real-Time Pricing under Carbon-Tax-Induced Variable Renewable Energy Supply," Discussion Papers of DIW Berlin 1621, DIW Berlin, German Institute for Economic Research.
    12. Mattias Vesterberg and Chandra Kiran B. Krishnamurthy, 2016. "Residential End-use Electricity Demand: Implications for Real Time Pricing in Sweden," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    13. Gambardella, Christian & Pahle, Michael, 2018. "Time-varying electricity pricing and consumer heterogeneity: Welfare and distributional effects with variable renewable supply," Energy Economics, Elsevier, vol. 76(C), pages 257-273.
    14. Ren'e Aid & Dylan Possamai & Nizar Touzi, 2018. "Optimal electricity demand response contracting with responsiveness incentives," Papers 1810.09063, arXiv.org, revised May 2019.
    15. Arlt, Marie-Louise & Chassin, David & Rivetta, Claudio & Sweeney, James, 2024. "Impact of real-time pricing and residential load automation on distribution systems," Energy Policy, Elsevier, vol. 184(C).
    16. Krishnamurthy, Chandra Kiran B. & Vesterberg, Mattias & Böök, Herman & Lindfors, Anders V. & Svento, Rauli, 2018. "Real-time pricing revisited: Demand flexibility in the presence of micro-generation," Energy Policy, Elsevier, vol. 123(C), pages 642-658.
    17. Mattias Vesterberg & Chandra Kiran B. Krishnamurthy, 2016. "Residential End-use Electricity Demand: Implications for Real Time Pricing in Sweden," The Energy Journal, , vol. 37(4), pages 141-164, October.
    18. Christian Gambardella & Michael Pahle & Wolf-Peter Schill, 2020. "Do Benefits from Dynamic Tariffing Rise? Welfare Effects of Real-Time Retail Pricing Under Carbon Taxation and Variable Renewable Electricity Supply," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(1), pages 183-213, January.
    19. Jaeyong An & P. R. Kumar & Le Xie, 2016. "Dynamic Modeling of Price Responsive Demand in Real-time Electricity Market: Empirical Analysis," Papers 1612.05021, arXiv.org.
    20. Bergaentzlé, Claire & Clastres, Cédric & Khalfallah, Haikel, 2014. "Demand-side management and European environmental and energy goals: An optimal complementary approach," Energy Policy, Elsevier, vol. 67(C), pages 858-869.

    More about this item

    Keywords

    Dynamic electricity tariffs; Real-time pricing; Tariff design; Average short-term price spread; CO2 emission reduction;
    All these keywords.

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:112:y:2022:i:c:s0140988322003012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.