An evolutionary system for ozone concentration forecasting
Author
Abstract
Suggested Citation
DOI: 10.1007/s10796-016-9706-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chittaranjan Hota & Shambhu Upadhyaya & Jamal Nazzal Al-Karaki, 2015. "Advances in secure knowledge management in the big data era," Information Systems Frontiers, Springer, vol. 17(5), pages 983-986, October.
- Castelli, Mauro & Vanneschi, Leonardo & De Felice, Matteo, 2015. "Forecasting short-term electricity consumption using a semantics-based genetic programming framework: The South Italy case," Energy Economics, Elsevier, vol. 47(C), pages 37-41.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mauro Castelli & Ivo Gonçalves & Leonardo Trujillo & Aleš Popovič, 2017. "An evolutionary system for ozone concentration forecasting," Information Systems Frontiers, Springer, vol. 19(5), pages 1123-1132, October.
- Hu, Junjie & López Cabrera, Brenda & Melzer, Awdesch, 2021. "Advanced statistical learning on short term load process forecasting," IRTG 1792 Discussion Papers 2021-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Qizhi Tao & Yizhe Dong & Ziming Lin, 2017. "Who can get money? Evidence from the Chinese peer-to-peer lending platform," Information Systems Frontiers, Springer, vol. 19(3), pages 425-441, June.
- Federico Divina & Aude Gilson & Francisco Goméz-Vela & Miguel García Torres & José F. Torres, 2018. "Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting," Energies, MDPI, vol. 11(4), pages 1-31, April.
- Qizhi Tao & Yizhe Dong & Ziming Lin, 0. "Who can get money? Evidence from the Chinese peer-to-peer lending platform," Information Systems Frontiers, Springer, vol. 0, pages 1-17.
- Duangnate, Kannika & Mjelde, James W., 2017. "Comparison of data-rich and small-scale data time series models generating probabilistic forecasts: An application to U.S. natural gas gross withdrawals," Energy Economics, Elsevier, vol. 65(C), pages 411-423.
- Yogesh K. Dwivedi & Marijn Janssen & Emma L. Slade & Nripendra P. Rana & Vishanth Weerakkody & Jeremy Millard & Jan Hidders & Dhoya Snijders, 0. "Driving innovation through big open linked data (BOLD): Exploring antecedents using interpretive structural modelling," Information Systems Frontiers, Springer, vol. 0, pages 1-16.
- Bram Klievink & Bart-Jan Romijn & Scott Cunningham & Hans Bruijn, 0. "Big data in the public sector: Uncertainties and readiness," Information Systems Frontiers, Springer, vol. 0, pages 1-17.
- Saâdaoui, Foued & Ben Jabeur, Sami, 2023. "Analyzing the influence of geopolitical risks on European power prices using a multiresolution causal neural network," Energy Economics, Elsevier, vol. 124(C).
- Yan Mandy Dang & Yulei Gavin Zhang & James Morgan, 2017. "Integrating switching costs to information systems adoption: An empirical study on learning management systems," Information Systems Frontiers, Springer, vol. 19(3), pages 625-644, June.
- Meira, Erick & Lila, Maurício Franca & Cyrino Oliveira, Fernando Luiz, 2023. "A novel reconciliation approach for hierarchical electricity consumption forecasting based on resistant regression," Energy, Elsevier, vol. 269(C).
- Nirmalya Thakur & Kesha A. Patel & Audrey Poon & Rishika Shah & Nazif Azizi & Changhee Han, 2023. "A Comprehensive Analysis and Investigation of the Public Discourse on Twitter about Exoskeletons from 2017 to 2023," Future Internet, MDPI, vol. 15(10), pages 1-46, October.
- Bram Klievink & Bart-Jan Romijn & Scott Cunningham & Hans Bruijn, 2017. "Big data in the public sector: Uncertainties and readiness," Information Systems Frontiers, Springer, vol. 19(2), pages 267-283, April.
- Yan Mandy Dang & Yulei Gavin Zhang & James Morgan, 0. "Integrating switching costs to information systems adoption: An empirical study on learning management systems," Information Systems Frontiers, Springer, vol. 0, pages 1-20.
- Till Blesik & Markus Bick & Tyge-F. Kummer, 2022. "A Conceptualisation of Crowd Knowledge," Information Systems Frontiers, Springer, vol. 24(5), pages 1647-1665, October.
- Rajan, Rishabh & Rana, Nripendra P. & Parameswar, Nakul & Dhir, Sanjay & Sushil, & Dwivedi, Yogesh K., 2021. "Developing a modified total interpretive structural model (M-TISM) for organizational strategic cybersecurity management," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
- Francisco Martínez-Álvarez & Alicia Troncoso & Gualberto Asencio-Cortés & José C. Riquelme, 2015. "A Survey on Data Mining Techniques Applied to Electricity-Related Time Series Forecasting," Energies, MDPI, vol. 8(11), pages 1-32, November.
- Olivera Marjanovic & Greg Patmore & Nikola Balnave, 2023. "Visual Analytics: Transferring, Translating and Transforming Knowledge from Analytics Experts to Non-technical Domain Experts in Multidisciplinary Teams," Information Systems Frontiers, Springer, vol. 25(4), pages 1571-1588, August.
- Yogesh K. Dwivedi & Marijn Janssen & Emma L. Slade & Nripendra P. Rana & Vishanth Weerakkody & Jeremy Millard & Jan Hidders & Dhoya Snijders, 2017. "Driving innovation through big open linked data (BOLD): Exploring antecedents using interpretive structural modelling," Information Systems Frontiers, Springer, vol. 19(2), pages 197-212, April.
- de Oliveira, Erick Meira & Cyrino Oliveira, Fernando Luiz, 2018. "Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods," Energy, Elsevier, vol. 144(C), pages 776-788.
More about this item
Keywords
Evolutionary computation; Genetic programming; Smart cities; Forecasting; Air quality;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v::y::i::d:10.1007_s10796-016-9706-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.