An evolutionary system for ozone concentration forecasting
Author
Abstract
Suggested Citation
DOI: 10.1007/s10796-016-9706-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jacqueline Corbett, 2013. "Using information systems to improve energy efficiency: Do smart meters make a difference?," Information Systems Frontiers, Springer, vol. 15(5), pages 747-760, November.
- Chittaranjan Hota & Shambhu Upadhyaya & Jamal Nazzal Al-Karaki, 2015. "Advances in secure knowledge management in the big data era," Information Systems Frontiers, Springer, vol. 17(5), pages 983-986, October.
- Castelli, Mauro & Vanneschi, Leonardo & De Felice, Matteo, 2015. "Forecasting short-term electricity consumption using a semantics-based genetic programming framework: The South Italy case," Energy Economics, Elsevier, vol. 47(C), pages 37-41.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Vijayan Sugumaran & T. V. Geetha & D. Manjula & Hema Gopal, 2017. "Guest Editorial: Computational Intelligence and Applications," Information Systems Frontiers, Springer, vol. 19(5), pages 969-974, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mauro Castelli & Ivo Gonçalves & Leonardo Trujillo & Aleš Popovič, 0. "An evolutionary system for ozone concentration forecasting," Information Systems Frontiers, Springer, vol. 0, pages 1-10.
- Hu, Junjie & López Cabrera, Brenda & Melzer, Awdesch, 2021. "Advanced statistical learning on short term load process forecasting," IRTG 1792 Discussion Papers 2021-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Roya Gholami & Alemayehu Molla & Suparna Goswami & Christopher Brewster, 2018. "Green information systems use in social enterprise: the case of a community-led eco-localization website in the West Midlands region of the UK," Information Systems Frontiers, Springer, vol. 20(6), pages 1345-1361, December.
- Qizhi Tao & Yizhe Dong & Ziming Lin, 2017. "Who can get money? Evidence from the Chinese peer-to-peer lending platform," Information Systems Frontiers, Springer, vol. 19(3), pages 425-441, June.
- Rashed Al Karim & Md Karim Rabiul & Towhid Ahamed & Dewan Niamul Karim & Mahmuda Mehzabeen, 2024. "Integrating Green Entrepreneurial Orientation, Green Information Systems, and Management Support with Green Supply Chain Management to Foster Firms’ Environmental Performance," Sustainability, MDPI, vol. 16(12), pages 1-17, June.
- Ajaya Kumar Swain & Ray Qing Cao, 2019. "Using sentiment analysis to improve supply chain intelligence," Information Systems Frontiers, Springer, vol. 21(2), pages 469-484, April.
- Federico Divina & Aude Gilson & Francisco Goméz-Vela & Miguel García Torres & José F. Torres, 2018. "Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting," Energies, MDPI, vol. 11(4), pages 1-31, April.
- McHenry, Mark P., 2013. "Technical and governance considerations for advanced metering infrastructure/smart meters: Technology, security, uncertainty, costs, benefits, and risks," Energy Policy, Elsevier, vol. 59(C), pages 834-842.
- Jelena Lukić & Miloš Radenković & Marijana Despotović-Zrakić & Aleksandra Labus & Zorica Bogdanović, 2017. "Supply chain intelligence for electricity markets: A smart grid perspective," Information Systems Frontiers, Springer, vol. 19(1), pages 91-107, February.
- Zhaojun Yang & Jun Sun & Yali Zhang & Ying Wang, 2018. "Peas and carrots just because they are green? Operational fit between green supply chain management and green information system," Information Systems Frontiers, Springer, vol. 20(3), pages 627-645, June.
- Roya Gholami & Alemayehu Molla & Suparna Goswami & Christopher Brewster, 0. "Green information systems use in social enterprise: the case of a community-led eco-localization website in the West Midlands region of the UK," Information Systems Frontiers, Springer, vol. 0, pages 1-17.
- Sylwia Słupik & Joanna Kos-Łabędowicz & Joanna Trzęsiok, 2021. "How to Encourage Energy Savings Behaviours? The Most Effective Incentives from the Perspective of European Consumers," Energies, MDPI, vol. 14(23), pages 1-25, November.
- Qizhi Tao & Yizhe Dong & Ziming Lin, 0. "Who can get money? Evidence from the Chinese peer-to-peer lending platform," Information Systems Frontiers, Springer, vol. 0, pages 1-17.
- Duangnate, Kannika & Mjelde, James W., 2017. "Comparison of data-rich and small-scale data time series models generating probabilistic forecasts: An application to U.S. natural gas gross withdrawals," Energy Economics, Elsevier, vol. 65(C), pages 411-423.
- Yogesh K. Dwivedi & Marijn Janssen & Emma L. Slade & Nripendra P. Rana & Vishanth Weerakkody & Jeremy Millard & Jan Hidders & Dhoya Snijders, 0. "Driving innovation through big open linked data (BOLD): Exploring antecedents using interpretive structural modelling," Information Systems Frontiers, Springer, vol. 0, pages 1-16.
- Liu, Liang & Yang, Kun & Fujii, Hidemichi & Liu, Jun, 2021.
"Artificial intelligence and energy intensity in China’s industrial sector: Effect and transmission channel,"
Economic Analysis and Policy, Elsevier, vol. 70(C), pages 276-293.
- Liu, Liang & Yang, Kun & Fujii, Hidemichi & Liu, Jun, 2021. "Artificial Intelligence and Energy Intensity in China’s Industrial Sector: Effect and Transmission Channel," MPRA Paper 106333, University Library of Munich, Germany.
- Bram Klievink & Bart-Jan Romijn & Scott Cunningham & Hans Bruijn, 0. "Big data in the public sector: Uncertainties and readiness," Information Systems Frontiers, Springer, vol. 0, pages 1-17.
- Saâdaoui, Foued & Ben Jabeur, Sami, 2023. "Analyzing the influence of geopolitical risks on European power prices using a multiresolution causal neural network," Energy Economics, Elsevier, vol. 124(C).
- Strong, Derek Ryan, 2017. "The Early Diffusion of Smart Meters in the US Electric Power Industry," Thesis Commons 7zprk, Center for Open Science.
- Yan Mandy Dang & Yulei Gavin Zhang & James Morgan, 2017. "Integrating switching costs to information systems adoption: An empirical study on learning management systems," Information Systems Frontiers, Springer, vol. 19(3), pages 625-644, June.
More about this item
Keywords
Evolutionary computation; Genetic programming; Smart cities; Forecasting; Air quality;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:19:y:2017:i:5:d:10.1007_s10796-016-9706-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.