IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v42y2014icp213-218.html
   My bibliography  Save this article

Modelling the redirection of technical change: The pitfalls of incorporeal visions of the economy

Author

Listed:
  • Pottier, Antonin
  • Hourcade, Jean-Charles
  • Espagne, Etienne

Abstract

This paper discusses attempts to represent the role of R&D in the transition towards a low carbon economy through models with no meaningful granularity to inform the studied phenomenon. By means of a critical analysis of (Acemoglu et al., 2012), we show that the advantage of these models, their analytical tractability, does not make up for their disadvantages, lack of control over policy implications and questionable numerical results. On the one hand, a comprehensive analysis of the results of Acemoglu et al. (2012) shows that even research subsidies do not pave the way for ambitious climate policies with low transitory costs, thus contradicting their policy message. On the other hand, critical parameters such as the elasticity of substitution between clean and dirty technologies, carbon sinks, or the productivity of researchers are not in accordance with existing scientific knowledge. We show that using more realistic parameters leads to even more pessimistic conclusions and that their model provides no leeway for overcoming them. We suggest that a too highly aggregated model can only describe an incorporeal economy and comes to a deadlock. We propose a more promising route for economic research in order to break this deadlock.

Suggested Citation

  • Pottier, Antonin & Hourcade, Jean-Charles & Espagne, Etienne, 2014. "Modelling the redirection of technical change: The pitfalls of incorporeal visions of the economy," Energy Economics, Elsevier, vol. 42(C), pages 213-218.
  • Handle: RePEc:eee:eneeco:v:42:y:2014:i:c:p:213-218
    DOI: 10.1016/j.eneco.2013.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098831300279X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2013.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Nordhaus, William, 2011. "Designing a friendly space for technological change to slow global warming," Energy Economics, Elsevier, vol. 33(4), pages 665-673, July.
    3. Arthur, W Brian, 1989. "Competing Technologies, Increasing Returns, and Lock-In by Historical Events," Economic Journal, Royal Economic Society, vol. 99(394), pages 116-131, March.
    4. Dahl, Carol A., 1993. "A survey of energy demand elasticities in support of the development of the NEMS," MPRA Paper 13962, University Library of Munich, Germany.
    5. Solow, Robert M, 1988. "Growth Theory and After," American Economic Review, American Economic Association, vol. 78(3), pages 307-317, June.
    6. Schmidt, Robert C. & Marschinski, Robert, 2009. "A model of technological breakthrough in the renewable energy sector," Ecological Economics, Elsevier, vol. 69(2), pages 435-444, December.
    7. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    8. Weyant, John P., 2011. "Accelerating the development and diffusion of new energy technologies: Beyond the "valley of death"," Energy Economics, Elsevier, vol. 33(4), pages 674-682, July.
    9. Mattauch, Linus & Creutzig, Felix & Edenhofer, Ottmar, 2015. "Avoiding carbon lock-in: Policy options for advancing structural change," Economic Modelling, Elsevier, vol. 50(C), pages 49-63.
    10. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    11. M. Ha-Duong & M. J. Grubb & J.-C. Hourcade, 1997. "Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement," Nature, Nature, vol. 390(6657), pages 270-273, November.
    12. Hourcade, Jean-Charles & Ambrosi, Philippe & Dumas, Patrice, 2009. "Beyond the Stern Review: Lessons from a risky venture at the limits of the cost-benefit analysis," Ecological Economics, Elsevier, vol. 68(10), pages 2479-2484, August.
    13. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    14. Ahearne, John F., 2011. "Prospects for nuclear energy," Energy Economics, Elsevier, vol. 33(4), pages 572-580, July.
    15. Manuel Frondel & Christoph M. Schmidt, 2002. "The Capital-Energy Controversy: An Artifact of Cost Shares?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 53-79.
    16. Espey, Molly, 1998. "Gasoline demand revisited: an international meta-analysis of elasticities," Energy Economics, Elsevier, vol. 20(3), pages 273-295, June.
    17. Goeschl, Timo & Perino, Grischa, 2009. "On backstops and boomerangs: Environmental R&D under technological uncertainty," Energy Economics, Elsevier, vol. 31(5), pages 800-809, September.
    18. Felix Creutzig & Rainer Mühlhoff & Julia Römer, 2012. "One Planet Mobility - Transforming Cities towards Low-Carbon Mobility," Working Papers 1, Department of Climate Change Economics, TU Berlin, revised Feb 2012.
    19. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
    20. Jean-Charles Hourcade & Philippe Ambrosi & Patrice Dumas, 2009. "Beyond the Stern Review: Lessons from a risky venture at the limits of the cost–benefit analysis," Post-Print hal-00716769, HAL.
    21. Giovanni Dosi, 2000. "Sources, Procedures, and Microeconomic Effects of Innovation," Chapters, in: Innovation, Organization and Economic Dynamics, chapter 2, pages 63-114, Edward Elgar Publishing.
    22. Jones, Charles I, 1995. "R&D-Based Models of Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 759-784, August.
    23. Jean-Charles Hourcade & Frédéric Ghersi, 2000. "Le rôle du changement technique dans le double dividende d'écotaxes," Économie et Prévision, Programme National Persée, vol. 143(2), pages 47-68.
    24. Mads Greaker & Tom-Reiel Heggedal, 2012. "A Comment on the Environment and Directed Technical Change," Discussion Papers 713, Statistics Norway, Research Department.
    25. Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
    26. Gerlagh, Reyer, 2008. "A climate-change policy induced shift from innovations in carbon-energy production to carbon-energy savings," Energy Economics, Elsevier, vol. 30(2), pages 425-448, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lennox, James A. & Witajewski-Baltvilks, Jan, 2017. "Directed technical change with capital-embodied technologies: Implications for climate policy," Energy Economics, Elsevier, vol. 67(C), pages 400-409.
    2. Peter K. Kruse-Andersen, 2016. "Directed Technical Change and Economic Growth Effects of Environmental Policy," Discussion Papers 16-06, University of Copenhagen. Department of Economics.
    3. Emeline Bezin, 2019. "The economics of Green consumption, cultural transmission and sustainable technological change," PSE-Ecole d'économie de Paris (Postprint) halshs-02087970, HAL.
    4. Bezin, Emeline, 2019. "The economics of green consumption, cultural transmission and sustainable technological change," Journal of Economic Theory, Elsevier, vol. 181(C), pages 497-546.
    5. Mattauch, Linus & Creutzig, Felix & Edenhofer, Ottmar, 2015. "Avoiding carbon lock-in: Policy options for advancing structural change," Economic Modelling, Elsevier, vol. 50(C), pages 49-63.
    6. Yang, Jun & Yang, Dingjian & Cheng, Jixin, 2024. "The non-rivalry of data, directed technical change and the environment: A theoretical study incorporating data as a production factor," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 417-448.
    7. Etienne Espagne, 2018. "Money, Finance and Climate: The Elusive Quest for a Truly Integrated Assessment Model," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 60(1), pages 131-143, March.
    8. Tunç Durmaz & Fred Schroyen, 2020. "Evaluating Carbon Capture And Storage In A Climate Model With Endogenous Technical Change," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-47, February.
    9. Catalano,Michele & Forni,Lorenzo, 2022. "Fiscal Policies for a Sustainable Recovery and a Green Transformation," Policy Research Working Paper Series 9799, The World Bank.
    10. van den Bijgaart, Inge, 2017. "The unilateral implementation of a sustainable growth path with directed technical change," European Economic Review, Elsevier, vol. 91(C), pages 305-327.
    11. Peter K. Kruse-Andersen, 2019. "Directed Technical Change, Environmental Sustainability, and Population Growth," Discussion Papers 19-12, University of Copenhagen. Department of Economics.
    12. Emeline Bezin, 2019. "The economics of Green consumption, cultural transmission and sustainable technological change," Post-Print halshs-02087970, HAL.
    13. Wiskich, Anthony, 2024. "A carbon tax versus clean subsidies: Optimal and suboptimal policies for the clean transition," Energy Economics, Elsevier, vol. 132(C).
    14. Fabian Stöckl, 2020. "Is Substitutability the New Efficiency? Endogenous Investment in the Elasticity of Substitution between Clean and Dirty Energy," Discussion Papers of DIW Berlin 1886, DIW Berlin, German Institute for Economic Research.
    15. Fabian Stöckl & Alexander Zerrahn, 2023. "Substituting Clean for Dirty Energy: A Bottom-Up Analysis," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(3), pages 819-863.
    16. Etienne Espagne, 2016. "Climate Finance at COP21 and After: Lessons Learnt," CEPII Policy Brief 2016-09, CEPII research center.
    17. Kostas Fragkiadakis & Panagiotis Fragkos & Leonidas Paroussos, 2020. "Low-Carbon R&D Can Boost EU Growth and Competitiveness," Energies, MDPI, vol. 13(19), pages 1-29, October.
    18. Patricia Laurens & Christian Le Bas & Stéphane Lhuillery & Antoine Schoen, 2017. "The determinants of cleaner energy innovations of the world’s largest firms: the impact of firm learning and knowledge capital," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(4), pages 311-333, May.
    19. Wiskich, Anthony, 2021. "A comment on innovation with multiple equilibria and "The environment and directed technical change"," Energy Economics, Elsevier, vol. 94(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean Charles Hourcade & Antonin Pottier & Etienne Espagne, 2011. "The environment and directed technical change : comment," CIRED Working Papers hal-00866435, HAL.
    2. Lehmann, Paul & Gawel, Erik, 2013. "Why should support schemes for renewable electricity complement the EU emissions trading scheme?," Energy Policy, Elsevier, vol. 52(C), pages 597-607.
    3. Kemp-Benedict, Eric, 2014. "Shifting to a Green Economy: Lock-in, Path Dependence, and Policy Options," MPRA Paper 60175, University Library of Munich, Germany.
    4. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2012. "Learning or lock-in: Optimal technology policies to support mitigation," Resource and Energy Economics, Elsevier, vol. 34(1), pages 1-23.
    5. Shiell, Leslie & Lyssenko, Nikita, 2014. "Climate policy and induced R&D: How great is the effect?," Energy Economics, Elsevier, vol. 46(C), pages 279-294.
    6. Carolyn Fischer & Garth Heutel, 2013. "Environmental Macroeconomics: Environmental Policy, Business Cycles, and Directed Technical Change," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 197-210, June.
    7. Aalbers, Rob & Shestalova, Victoria & Kocsis, Viktória, 2013. "Innovation policy for directing technical change in the power sector," Energy Policy, Elsevier, vol. 63(C), pages 1240-1250.
    8. Cameron Hepburn & Jacquelyn Pless & David Popp, 2018. "Policy Brief—Encouraging Innovation that Protects Environmental Systems: Five Policy Proposals," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 154-169.
    9. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    10. Mattauch, Linus & Creutzig, Felix & Edenhofer, Ottmar, 2015. "Avoiding carbon lock-in: Policy options for advancing structural change," Economic Modelling, Elsevier, vol. 50(C), pages 49-63.
    11. Armon Rezai & Frederick Van Der Ploeg, 2017. "Abandoning Fossil Fuel: How Fast and How Much," Manchester School, University of Manchester, vol. 85(S2), pages 16-44, December.
    12. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    13. Armon Rezai & Frederick Ploeg, 2017. "Second-Best Renewable Subsidies to De-carbonize the Economy: Commitment and the Green Paradox," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 409-434, March.
    14. Lehmann, Paul, 2013. "Supplementing an emissions tax by a feed-in tariff for renewable electricity to address learning spillovers," Energy Policy, Elsevier, vol. 61(C), pages 635-641.
    15. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    16. Ehrenfeld, Wilfried, 2012. "Towards a Theory of Climate Innovation - A Model Framework for Analyzing Drivers and Determinants," IWH Discussion Papers 1/2012, Halle Institute for Economic Research (IWH).
    17. Jean-Charles Hourcade & Michael J. Grubb & Aurélie Méjean, 2015. "The 'Dark Matter' in the Search for Sustainable Growth: Energy, Innovation and the Financially Paradoxical Role of Climate Confidence," Post-Print hal-01646242, HAL.
    18. Francesco Nicolli & Francesco Vona & Lionel Nesta, 2012. "Determinants of Renewable Energy Innovation: Environmental Policies vs. Market Regulation," Working Papers 201204, University of Ferrara, Department of Economics.
    19. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    20. repec:hal:wpspec:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    21. Vogt-Schilb, Adrien & Meunier, Guy & Hallegatte, Stephane, 2012. "How inertia and limited potentials affect the timing of sectoral abatements in optimal climate policy," Policy Research Working Paper Series 6154, The World Bank.
    22. Laura Nowzohour, 2021. "Can Adjustments Costs in Research Derail the Transition to Green Growth ?," CIES Research Paper series 67-2021, Centre for International Environmental Studies, The Graduate Institute.

    More about this item

    Keywords

    Technological change; Endogenous growth; Climate; Energy substitutability;
    All these keywords.

    JEL classification:

    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • B4 - Schools of Economic Thought and Methodology - - Economic Methodology

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:42:y:2014:i:c:p:213-218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.