IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v131y2024ics0140988324001002.html
   My bibliography  Save this article

Assessing the influence of artificial intelligence on the energy efficiency for sustainable ecological products value

Author

Listed:
  • Song, Malin
  • Pan, Heting
  • Shen, Zhiyang
  • Tamayo-Verleene, Kristine

Abstract

In the context of sustainable development, the enhancement of energy efficiency (EF) for achieving cleaner production has become a prominent area of academic interest. Accordingly, this study explores the correlation between artificial intelligence (AI) investments and corporate EF to strike a balance between economic growth and ecological products value realization. In light of the “double carbon” target constraints and economic challenges, addressing this question holds paramount theoretical and practical significance. This study primarily utilizes data from Chinese listed companies from 2007 to 2021 to gauge the influence of AI on corporate EF. Results of our benchmark regression analysis reveal that a 1 percentage point increase in AI investment can lead to a corresponding 0.0228 percentage point improvement in enterprise EF. Additionally, employing the Heckman model, our study establishes that the enterprise EF data examined herein has no sample selection bias. Furthermore, no endogenous selection issues were observed within the scope of our study. Exploring the mechanisms of this relationship, our analysis demonstrates that the number of independent green patent applications and the sustainability accounting index strengthen the positive impact of AI on corporate EF. Thus, this paper offers valuable insights and reference points for businesses aiming to enhance their energy conservation and emissions reduction efforts.

Suggested Citation

  • Song, Malin & Pan, Heting & Shen, Zhiyang & Tamayo-Verleene, Kristine, 2024. "Assessing the influence of artificial intelligence on the energy efficiency for sustainable ecological products value," Energy Economics, Elsevier, vol. 131(C).
  • Handle: RePEc:eee:eneeco:v:131:y:2024:i:c:s0140988324001002
    DOI: 10.1016/j.eneco.2024.107392
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988324001002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2024.107392?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Zhang, Zhuo, 2023. "The impact of the artificial intelligence industry on the number and structure of employments in the digital economy environment," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    2. Liu, Haiying & Liu, Zexiao & Zhang, Chunhong & Li, Tianyu, 2023. "Transformational insurance and green credit incentive policies as financial mechanisms for green energy transitions and low-carbon economic development," Energy Economics, Elsevier, vol. 126(C).
    3. Zhou, Yuwen & Tian, Lixin & Yang, Xiaoguang, 2023. "Schumpeterian endogenous growth model under green innovation and its enculturation effect," Energy Economics, Elsevier, vol. 127(PB).
    4. Dong, Kangyin & Dou, Yue & Jiang, Qingzhe, 2022. "Income inequality, energy poverty, and energy efficiency: Who cause who and how?," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    5. Chen, Yufen & Liu, Yanni, 2021. "How biased technological progress sustainably improve the energy efficiency: An empirical research of manufacturing industry in China," Energy, Elsevier, vol. 230(C).
    6. Ribeiro, Beatriz Couto & Ferrero, Luciane Graziele Pereira & Bin, Adriana & Blind, Knut, 2023. "Effects of innovation stimuli regulation in the electricity sector: A quantitative study on European countries," Energy Economics, Elsevier, vol. 118(C).
    7. Shahbaz, Muhammad & Siddiqui, Aaliyah & Ahmad, Shabbir & Jiao, Zhilun, 2023. "Financial development as a new determinant of energy diversification: The role of natural capital and structural changes in Australia," Energy Economics, Elsevier, vol. 126(C).
    8. Gozgor, Giray & Paramati, Sudharshan Reddy, 2022. "Does energy diversification cause an economic slowdown? Evidence from a newly constructed energy diversification index," Energy Economics, Elsevier, vol. 109(C).
    9. Zhao, Congyu & Wang, Kun & Dong, Xiucheng & Dong, Kangyin, 2022. "Is smart transportation associated with reduced carbon emissions? The case of China," Energy Economics, Elsevier, vol. 105(C).
    10. Jiang, Ping & Nie, Ying & Wang, Jianzhou & Huang, Xiaojia, 2023. "Multivariable short-term electricity price forecasting using artificial intelligence and multi-input multi-output scheme," Energy Economics, Elsevier, vol. 117(C).
    11. Mier, Mathias & Weissbart, Christoph, 2020. "Power markets in transition: Decarbonization, energy efficiency, and short-term demand response," Energy Economics, Elsevier, vol. 86(C).
    12. Cong, Di & Liang, Lingling & Jing, Shaoxing & Han, Yongming & Geng, Zhiqiang & Chu, Chong, 2021. "Energy supply efficiency evaluation of integrated energy systems using novel SBM-DEA integrating Monte Carlo," Energy, Elsevier, vol. 231(C).
    13. Lei, Yu-Tian & Ma, Chao-Qun & Mirza, Nawazish & Ren, Yi-Shuai & Narayan, Seema Wati & Chen, Xun-Qi, 2022. "A renewable energy microgrids trading management platform based on permissioned blockchain," Energy Economics, Elsevier, vol. 115(C).
    14. Giacomo Damioli & Vincent Van Roy & Daniel Vertesy, 2021. "The impact of artificial intelligence on labor productivity," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 11(1), pages 1-25, March.
    15. Shu, Haicheng & Wang, Yu & Umar, Muhammad & Zhong, Yifan, 2023. "Dynamics of renewable energy research, investment in EnvoTech and environmental quality in the context of G7 countries," Energy Economics, Elsevier, vol. 120(C).
    16. Spandagos, Constantine & Tovar Reaños, Miguel & Lynch, Muireann Á, 2023. "Energy poverty prediction and effective targeting for just transitions with machine learning," Papers WP762, Economic and Social Research Institute (ESRI).
    17. Spandagos, Constantine & Tovar Reaños, Miguel Angel & Lynch, Muireann Á., 2023. "Energy poverty prediction and effective targeting for just transitions with machine learning," Energy Economics, Elsevier, vol. 128(C).
    18. Li, Ming-Jia & Tao, Wen-Quan, 2017. "Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry," Applied Energy, Elsevier, vol. 187(C), pages 203-215.
    19. Du, Juntao & Shen, Zhiyang & Song, Malin & Vardanyan, Michael, 2023. "The role of green financing in facilitating renewable energy transition in China: Perspectives from energy governance, environmental regulation, and market reforms," Energy Economics, Elsevier, vol. 120(C).
    20. Lin, Boqiang & Chen, Xing, 2020. "How technological progress affects input substitution and energy efficiency in China: A case of the non-ferrous metals industry," Energy, Elsevier, vol. 206(C).
    21. Kinkel, Steffen & Capestro, Mauro & Di Maria, Eleonora & Bettiol, Marco, 2023. "Artificial intelligence and relocation of production activities: An empirical cross-national study," International Journal of Production Economics, Elsevier, vol. 261(C).
    22. Mertzanis, Charilaos, 2023. "Energy policy diversity and green bond issuance around the world," Energy Economics, Elsevier, vol. 128(C).
    23. Lau, Chi Keung & Gozgor, Giray & Mahalik, Mantu Kumar & Patel, Gupteswar & Li, Jing, 2023. "Introducing a new measure of energy transition: Green quality of energy mix and its impact on CO2 emissions," Energy Economics, Elsevier, vol. 122(C).
    24. Malin Song & Heting Pan & Michael Vardanyan & Zhiyang Shen, 2023. "Evaluating the energy efficiency-enhancing potential of the digital economy: Evidence from China," Post-Print hal-04277444, HAL.
    25. Zhou, Sheng & Tong, Qing & Pan, Xunzhang & Cao, Min & Wang, Hailin & Gao, Ji & Ou, Xunmin, 2021. "Research on low-carbon energy transformation of China necessary to achieve the Paris agreement goals: A global perspective," Energy Economics, Elsevier, vol. 95(C).
    26. Peter Waring & Azad Bali & Chris Vas, 2020. "The fourth industrial revolution and labour market regulation in Singapore," The Economic and Labour Relations Review, , vol. 31(3), pages 347-363, September.
    27. Morgan R. Frank & David Autor & James E. Bessen & Erik Brynjolfsson & Manuel Cebrian & David J. Deming & Maryann Feldman & Matthew Groh & José Lobo & Esteban Moro & Dashun Wang & Hyejin Youn & Iyad Ra, 2019. "Toward understanding the impact of artificial intelligence on labor," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(14), pages 6531-6539, April.
    28. Antunes, Micaela & Teotónio, Carla & Quintal, Carlota & Martins, Rita, 2023. "Energy affordability across and within 26 European countries: Insights into the prevalence and depth of problems using microeconomic data," Energy Economics, Elsevier, vol. 127(PA).
    29. Chishti, Muhammad Zubair & Sinha, Avik & Zaman, Umer & Shahzad, Umer, 2023. "Exploring the dynamic connectedness among energy transition and its drivers: Understanding the moderating role of global geopolitical risk," Energy Economics, Elsevier, vol. 119(C).
    30. Zhang, Yue-Jun & Sun, Ya-Fang & Huang, Junling, 2018. "Energy efficiency, carbon emission performance, and technology gaps: Evidence from CDM project investment," Energy Policy, Elsevier, vol. 115(C), pages 119-130.
    31. J. Daniel Khazzoom, 1980. "Economic Implications of Mandated Efficiency in Standards for Household Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 21-40.
    32. Du, Juntao & Shen, Zhiyang & Song, Malin & Zhang, Linda, 2023. "Nexus between digital transformation and energy technology innovation: An empirical test of A-share listed enterprises," Energy Economics, Elsevier, vol. 120(C).
    33. Sinha, Avik & Bekiros, Stelios & Hussain, Nazim & Nguyen, Duc Khuong & Khan, Sana Akbar, 2023. "How social imbalance and governance quality shape policy directives for energy transition in the OECD countries?," Energy Economics, Elsevier, vol. 120(C).
    34. Hasanbeigi, Ali & Price, Lynn & Lin, Elina, 2012. "Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6220-6238.
    35. Xueyuan Gao & Hua Feng, 2023. "AI-Driven Productivity Gains: Artificial Intelligence and Firm Productivity," Sustainability, MDPI, vol. 15(11), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Malin & Du, Juntao, 2024. "Mechanisms for realizing the ecological products value: Green finance intervention and support," International Journal of Production Economics, Elsevier, vol. 271(C).
    2. Jiao, Anqi & Lu, Juntai & Ren, Honglin & Wei, Jia, 2024. "The role of AI capabilities in environmental management: Evidence from USA firms," Energy Economics, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiaojing & Khan, Khalid & Shao, Xuefeng & Oprean-Stan, Camelia & Zhang, Qian, 2024. "The rising role of artificial intelligence in renewable energy development in China," Energy Economics, Elsevier, vol. 132(C).
    2. Chishti, Muhammad Zubair & Xia, Xiqiang & Dogan, Eyup, 2024. "Understanding the effects of artificial intelligence on energy transition: The moderating role of Paris Agreement," Energy Economics, Elsevier, vol. 131(C).
    3. Lee, Chi-Chuan & Fang, Yuzhu & Quan, Shiyun & Li, Xinghao, 2024. "Leveraging the power of artificial intelligence toward the energy transition: The key role of the digital economy," Energy Economics, Elsevier, vol. 135(C).
    4. Zhao, Qian & Wang, Lu & Stan, Sebastian-Emanuel & Mirza, Nawazish, 2024. "Can artificial intelligence help accelerate the transition to renewable energy?," Energy Economics, Elsevier, vol. 134(C).
    5. Qin, Meng & Hu, Wei & Qi, Xinzhou & Chang, Tsangyao, 2024. "Do the benefits outweigh the disadvantages? Exploring the role of artificial intelligence in renewable energy," Energy Economics, Elsevier, vol. 131(C).
    6. Ye, Tuo & Zhao, Songyu & Lau, Chi Keung Marco & Chau, Frankie, 2024. "Social media sentiment of hydrogen fuel cell vehicles in China: Evidence from artificial intelligence algorithms," Energy Economics, Elsevier, vol. 133(C).
    7. Chen, Yan & Zhang, Ruiqian & Lyu, Jiayi & Hou, Yuqi, 2024. "AI and Nuclear: A perfect intersection of danger and potential?," Energy Economics, Elsevier, vol. 133(C).
    8. Jiao, Anqi & Lu, Juntai & Ren, Honglin & Wei, Jia, 2024. "The role of AI capabilities in environmental management: Evidence from USA firms," Energy Economics, Elsevier, vol. 134(C).
    9. Zhong, Yufei & Chen, Xuesheng & Wang, Zhixian & Lin, Regina Fang-Ying, 2024. "The nexus among artificial intelligence, supply chain and energy sustainability: A time-varying analysis," Energy Economics, Elsevier, vol. 132(C).
    10. Zhang, Weike & Zeng, Ming, 2024. "Is artificial intelligence a curse or a blessing for enterprise energy intensity? Evidence from China," Energy Economics, Elsevier, vol. 134(C).
    11. Zhao, Qiuyun & Jiang, Mei & Zhao, Zuoxiang & Liu, Fan & Zhou, Li, 2024. "The impact of green innovation on carbon reduction efficiency in China: Evidence from machine learning validation," Energy Economics, Elsevier, vol. 133(C).
    12. Yang, Shengyao & Zhu, Meng Nan & Yu, Haiyan, 2024. "Are artificial intelligence and blockchain the key to unlocking the box of clean energy?," Energy Economics, Elsevier, vol. 134(C).
    13. Zhou, Wei & Zhuang, Yan & Chen, Yan, 2024. "How does artificial intelligence affect pollutant emissions by improving energy efficiency and developing green technology," Energy Economics, Elsevier, vol. 131(C).
    14. Chen, Yan & Zhang, Ruiqian & Lyu, Jiayi & Ma, Xin, 2024. "The butterfly effect of cloud computing on the low-carbon economy," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    15. Ren, Xiaocong & Huang, Zilong & He, Yiqun, 2024. "Financial warning for coal mining investments: Evidence from the fruit fly optimisation algorithm with backpropagation neural networks," Energy Economics, Elsevier, vol. 134(C).
    16. Lee, Chi-Chuan & Song, Hepeng & An, Jiafu, 2024. "The impact of green finance on energy transition: Does climate risk matter?," Energy Economics, Elsevier, vol. 129(C).
    17. Wang, Zongrun & Cao, Xuxin & Ren, Xiaohang & Gozgor, Giray, 2024. "Digital finance and the energy transition: Evidence from Chinese prefecture-level cities," Global Finance Journal, Elsevier, vol. 61(C).
    18. Satar Bakhsh & Md Shabbir Alam & Wei Zhang, 2024. "Green finance and Sustainable Development Goals: is there a role for geopolitical uncertainty?," Economic Change and Restructuring, Springer, vol. 57(4), pages 1-30, August.
    19. Li, Zhen & Wu, Baijun & Wang, Danyang & Tang, Maogang, 2022. "Government mandatory energy-biased technological progress and enterprises' environmental performance: Evidence from a quasi-natural experiment of cleaner production standards in China," Energy Policy, Elsevier, vol. 162(C).
    20. Wang, Jianda & Dong, Kangyin & Sha, Yezhou & Yan, Cheng, 2022. "Envisaging the carbon emissions efficiency of digitalization: The case of the internet economy for China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:131:y:2024:i:c:s0140988324001002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.