Artificial Intelligence in Energy Economics Research: A Bibliometric Review
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Janczura, Joanna & Wójcik, Edyta, 2022. "Dynamic short-term risk management strategies for the choice of electricity market based on probabilistic forecasts of profit and risk measures. The German and the Polish market case study," Energy Economics, Elsevier, vol. 110(C).
- Düsterhöft, Maximilian & Schiemann, Frank & Walther, Thomas, 2023. "Let’s talk about risk! Stock market effects of risk disclosure for European energy utilities," Energy Economics, Elsevier, vol. 125(C).
- Weishu Liu, 2019. "The data source of this study is Web of Science Core Collection? Not enough," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1815-1824, December.
- Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
- Kocaarslan, Baris & Mushtaq, Rizwan, 2024. "The impact of liquidity conditions on the time-varying link between U.S. municipal green bonds and major risky markets during the COVID-19 crisis: A machine learning approach," Energy Policy, Elsevier, vol. 184(C).
- Xu Gong & Mengjie Li & Keqin Guan & Chuanwang Sun, 2023. "Climate change attention and carbon futures return prediction," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(9), pages 1261-1288, September.
- Gozgor, Giray & Paramati, Sudharshan Reddy, 2022.
"Does energy diversification cause an economic slowdown? Evidence from a newly constructed energy diversification index,"
Energy Economics, Elsevier, vol. 109(C).
- Giray Gozgor & Sudharshan Reddy Paramati, 2021. "Does Energy Diversification Cause an Economic Slowdown? Evidence from a Newly Constructed Energy Diversification Index," CESifo Working Paper Series 9247, CESifo.
- Wang, Bo & Wang, Jianda & Dong, Kangyin & Nepal, Rabindra, 2024. "How does artificial intelligence affect high-quality energy development? Achieving a clean energy transition society," Energy Policy, Elsevier, vol. 186(C).
- Wang, En-Ze & Lee, Chien-Chiang & Li, Yaya, 2022. "Assessing the impact of industrial robots on manufacturing energy intensity in 38 countries," Energy Economics, Elsevier, vol. 105(C).
- Dimou, Andreas & Vakalis, Stergios, 2022. "Technoeconomic analysis of green energy transitions in isolated grids: The case of Ai Stratis – Green Island," Renewable Energy, Elsevier, vol. 195(C), pages 66-75.
- Lutz Kilian & Robert J. Vigfusson, 2017.
"The Role of Oil Price Shocks in Causing U.S. Recessions,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(8), pages 1747-1776, December.
- Lutz Kilian & Robert J. Vigfusson, 2014. "The Role of Oil Price Shocks in Causing U.S. Recessions," International Finance Discussion Papers 1114, Board of Governors of the Federal Reserve System (U.S.).
- Lutz Kilian & Robert J. Vigfusson, 2016. "The Role of Oil Price Shocks in Causing U.S. Recessions," CESifo Working Paper Series 5743, CESifo.
- Kilian, Lutz & Vigfusson, Robert J., 2014. "The Role of Oil Price Shocks in Causing U.S. Recessions," CEPR Discussion Papers 10040, C.E.P.R. Discussion Papers.
- Kilian, Lutz & Vigfusson, Robert J., 2014. "The role of oil price shocks in causing U.S. recessions," CFS Working Paper Series 460, Center for Financial Studies (CFS).
- Čábelková, Inna & Strielkowski, Wadim & Streimikiene, Dalia & Cavallaro, Fausto & Streimikis, Justas, 2021. "The social acceptance of nuclear fusion for decision making towards carbon free circular economy: Evidence from Czech Republic," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
- Guo, Lili & Huang, Xinya & Li, Yanjiao & Li, Houjian, 2023. "Forecasting crude oil futures price using machine learning methods: Evidence from China," Energy Economics, Elsevier, vol. 127(PA).
- Shahbaz, Muhammad & Siddiqui, Aaliyah & Ahmad, Shabbir & Jiao, Zhilun, 2023. "Financial development as a new determinant of energy diversification: The role of natural capital and structural changes in Australia," Energy Economics, Elsevier, vol. 126(C).
- Hanyao Gao & Gang Kou & Haiming Liang & Hengjie Zhang & Xiangrui Chao & Cong-Cong Li & Yucheng Dong, 2024. "Machine learning in business and finance: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-35, December.
- Thakur, Jagruti & Hesamzadeh, Mohammad Reza & Date, Paresh & Bunn, Derek, 2023. "Pricing and hedging wind power prediction risk with binary option contracts," Energy Economics, Elsevier, vol. 126(C).
- Zhong, Yufei & Chen, Xuesheng & Wang, Zhixian & Lin, Regina Fang-Ying, 2024. "The nexus among artificial intelligence, supply chain and energy sustainability: A time-varying analysis," Energy Economics, Elsevier, vol. 132(C).
- Neto-Bradley, André Paul & Choudhary, Ruchi & Bazaz, Amir, 2020. "Slipping through the net: Can data science approaches help target clean cooking policy interventions?," Energy Policy, Elsevier, vol. 144(C).
- Chishti, Muhammad Zubair & Sinha, Avik & Zaman, Umer & Shahzad, Umer, 2023. "Exploring the dynamic connectedness among energy transition and its drivers: Understanding the moderating role of global geopolitical risk," Energy Economics, Elsevier, vol. 119(C).
- Maruejols, Lucie & Höschle, Lisa & Yu, Xiaohua, 2022. "Vietnam between economic growth and ethnic divergence: A LASSO examination of income-mediated energy consumption," Energy Economics, Elsevier, vol. 114(C).
- Bennedsen, Mikkel & Hillebrand, Eric & Jensen, Sebastian, 2023. "A neural network approach to the environmental Kuznets curve," Energy Economics, Elsevier, vol. 126(C).
- Zhao, Congyu & Dong, Kangyin & Wang, Kun & Nepal, Rabindra, 2024. "How does artificial intelligence promote renewable energy development? The role of climate finance," Energy Economics, Elsevier, vol. 133(C).
- Zhang, Weike & Zeng, Ming, 2024. "Is artificial intelligence a curse or a blessing for enterprise energy intensity? Evidence from China," Energy Economics, Elsevier, vol. 134(C).
- Wang, Zongrun & Zhang, Taiyu & Ren, Xiaohang & Shi, Yukun, 2024. "AI adoption rate and corporate green innovation efficiency: Evidence from Chinese energy companies," Energy Economics, Elsevier, vol. 132(C).
- Anca Gabriela Ilie & Marinela Luminita Emanuela Zlatea & Cristina Negreanu & Dan Dumitriu & Alma Pentescu, 2023. "Reliance on Russian Federation Energy Imports and Renewable Energy in the European Union," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(64), pages 780-780, August.
- Zhong, Wenli & Liu, Yang & Dong, Kangyin & Ni, Guohua, 2024. "Assessing the synergistic effects of artificial intelligence on pollutant and carbon emission mitigation in China," Energy Economics, Elsevier, vol. 138(C).
- Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
- Sinha, Avik & Bekiros, Stelios & Hussain, Nazim & Nguyen, Duc Khuong & Khan, Sana Akbar, 2023. "How social imbalance and governance quality shape policy directives for energy transition in the OECD countries?," Energy Economics, Elsevier, vol. 120(C).
- Zhang, Xiaojing & Khan, Khalid & Shao, Xuefeng & Oprean-Stan, Camelia & Zhang, Qian, 2024. "The rising role of artificial intelligence in renewable energy development in China," Energy Economics, Elsevier, vol. 132(C).
- Zhou, Wei & Zhuang, Yan & Chen, Yan, 2024. "How does artificial intelligence affect pollutant emissions by improving energy efficiency and developing green technology," Energy Economics, Elsevier, vol. 131(C).
- Zhao, Qian & Wang, Lu & Stan, Sebastian-Emanuel & Mirza, Nawazish, 2024. "Can artificial intelligence help accelerate the transition to renewable energy?," Energy Economics, Elsevier, vol. 134(C).
- Mangla, Sachin Kumar & Srivastava, Praveen Ranjan & Eachempati, Prajwal & Tiwari, Aviral Kumar, 2024. "Exploring the impact of key performance factors on energy markets: From energy risk management perspectives," Energy Economics, Elsevier, vol. 131(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ding, Tao & Li, Hao & Liu, Li & Feng, Kui, 2024. "An inquiry into the nexus between artificial intelligence and energy poverty in the light of global evidence," Energy Economics, Elsevier, vol. 136(C).
- Zhao, Qian & Wang, Lu & Stan, Sebastian-Emanuel & Mirza, Nawazish, 2024. "Can artificial intelligence help accelerate the transition to renewable energy?," Energy Economics, Elsevier, vol. 134(C).
- Jiao, Anqi & Lu, Juntai & Ren, Honglin & Wei, Jia, 2024. "The role of AI capabilities in environmental management: Evidence from USA firms," Energy Economics, Elsevier, vol. 134(C).
- Zhang, Weike & Zeng, Ming, 2024. "Is artificial intelligence a curse or a blessing for enterprise energy intensity? Evidence from China," Energy Economics, Elsevier, vol. 134(C).
- Zhang, Xiaojing & Khan, Khalid & Shao, Xuefeng & Oprean-Stan, Camelia & Zhang, Qian, 2024. "The rising role of artificial intelligence in renewable energy development in China," Energy Economics, Elsevier, vol. 132(C).
- Tao, Weiliang & Weng, Shimei & Chen, Xueli & ALHussan, Fawaz Baddar & Song, Malin, 2024. "Artificial intelligence-driven transformations in low-carbon energy structure: Evidence from China," Energy Economics, Elsevier, vol. 136(C).
- Lee, Chi-Chuan & Fang, Yuzhu & Quan, Shiyun & Li, Xinghao, 2024. "Leveraging the power of artificial intelligence toward the energy transition: The key role of the digital economy," Energy Economics, Elsevier, vol. 135(C).
- Wen, Jun & Yin, Hua-Tang & Chang, Chun-Ping & Tang, Kai, 2024. "How AI shapes greener futures: Comparative insights from equity vs debt investment responses in renewable energy," Energy Economics, Elsevier, vol. 136(C).
- Zhou, Wei & Zhuang, Yan & Chen, Yan, 2024. "How does artificial intelligence affect pollutant emissions by improving energy efficiency and developing green technology," Energy Economics, Elsevier, vol. 131(C).
- Qin, Meng & Hu, Wei & Qi, Xinzhou & Chang, Tsangyao, 2024. "Do the benefits outweigh the disadvantages? Exploring the role of artificial intelligence in renewable energy," Energy Economics, Elsevier, vol. 131(C).
- Ye, Tuo & Zhao, Songyu & Lau, Chi Keung Marco & Chau, Frankie, 2024. "Social media sentiment of hydrogen fuel cell vehicles in China: Evidence from artificial intelligence algorithms," Energy Economics, Elsevier, vol. 133(C).
- Chen, Yan & Zhang, Ruiqian & Lyu, Jiayi & Hou, Yuqi, 2024. "AI and Nuclear: A perfect intersection of danger and potential?," Energy Economics, Elsevier, vol. 133(C).
- Zhong, Yufei & Chen, Xuesheng & Wang, Zhixian & Lin, Regina Fang-Ying, 2024. "The nexus among artificial intelligence, supply chain and energy sustainability: A time-varying analysis," Energy Economics, Elsevier, vol. 132(C).
- Chishti, Muhammad Zubair & Xia, Xiqiang & Dogan, Eyup, 2024. "Understanding the effects of artificial intelligence on energy transition: The moderating role of Paris Agreement," Energy Economics, Elsevier, vol. 131(C).
- Tian, Lihui & Li, Xin & Lee, Cheng-Wen & Spulbăr, Cristi, 2024. "Investigating the asymmetric impact of artificial intelligence on renewable energy under climate policy uncertainty," Energy Economics, Elsevier, vol. 137(C).
- Zhao, Qiuyun & Jiang, Mei & Zhao, Zuoxiang & Liu, Fan & Zhou, Li, 2024. "The impact of green innovation on carbon reduction efficiency in China: Evidence from machine learning validation," Energy Economics, Elsevier, vol. 133(C).
- Yang, Shengyao & Zhu, Meng Nan & Yu, Haiyan, 2024. "Are artificial intelligence and blockchain the key to unlocking the box of clean energy?," Energy Economics, Elsevier, vol. 134(C).
- Wei, Xun & Pal, Shreya & Mahalik, Mantu Kumar & Liu, Weibai, 2024. "The role of energy efficiency in income inequality dynamics in developing Asia: Evidence from artificial neural networks," Energy Economics, Elsevier, vol. 136(C).
- Song, Malin & Pan, Heting & Shen, Zhiyang & Tamayo-Verleene, Kristine, 2024.
"Assessing the influence of artificial intelligence on the energy efficiency for sustainable ecological products value,"
Energy Economics, Elsevier, vol. 131(C).
- Malin Song & Heting Pan & Zhiyang Shen & Kristine Tamayo-Verleene, 2024. "Assessing the influence of artificial intelligence on the energy efficiency for sustainable ecological products value," Post-Print hal-04552684, HAL.
- Ran Ge & Yu Xia & Liquan Ge & Fei Li, 2025. "Knowledge Graph Analysis in Climate Action Research," Sustainability, MDPI, vol. 17(1), pages 1-30, January.
More about this item
Keywords
artificial intelligence; energy economics; bibliometric analysis; network analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:434-:d:1570956. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.