Information connectedness of international crude oil futures: Evidence from SC, WTI, and Brent
Author
Abstract
Suggested Citation
DOI: 10.1016/j.irfa.2022.102100
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ivo Welch & Amit Goyal, 2008.
"A Comprehensive Look at The Empirical Performance of Equity Premium Prediction,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
- Amit Goyal & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," Yale School of Management Working Papers amz2412, Yale School of Management, revised 01 Jan 2006.
- Amit Goyal & Ivo Welch & Athanasse Zafirov, 2021. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II," Swiss Finance Institute Research Paper Series 21-85, Swiss Finance Institute.
- Amit Goval & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," NBER Working Papers 10483, National Bureau of Economic Research, Inc.
- Diebold, Francis X. & Yılmaz, Kamil, 2014.
"On the network topology of variance decompositions: Measuring the connectedness of financial firms,"
Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
- Francis X. Diebold & Kamil Yilmaz, 2011. "On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms," Koç University-TUSIAD Economic Research Forum Working Papers 1124, Koc University-TUSIAD Economic Research Forum.
- Francis X. Diebold & Kamil Yilmaz, 2011. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Working Papers 11-45, Federal Reserve Bank of Philadelphia.
- Francis X. Diebold & Kamil Yılmaz, 2011. "On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms," PIER Working Paper Archive 11-031, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Francis X. Diebold & Kamil Yilmaz, 2011. "On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms," NBER Working Papers 17490, National Bureau of Economic Research, Inc.
- Liu, Tangyong & Gong, Xu, 2020. "Analyzing time-varying volatility spillovers between the crude oil markets using a new method," Energy Economics, Elsevier, vol. 87(C).
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Shi, Yanlin & Ho, Kin-Yip, 2015. "Long memory and regime switching: A simulation study on the Markov regime-switching ARFIMA model," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 189-204.
- Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2017. "Oil shocks and stock markets: Dynamic connectedness under the prism of recent geopolitical and economic unrest," International Review of Financial Analysis, Elsevier, vol. 50(C), pages 1-26.
- Francis X. Diebold & Kamil Yilmaz, 2009.
"Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets,"
Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
- FrancisX. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
- Francis X. Diebold & Kamil Yılmaz, 2007. "Measuring Financial Asset Return and Volatility Spillovers, With Application to Global Equity Markets," Koç University-TUSIAD Economic Research Forum Working Papers 0705, Koc University-TUSIAD Economic Research Forum.
- Francis X. Diebold & Kamil Yilmaz, 2008. "Measuring Financial Asset Return and Volatility Spillovers, With Application to Global Equity Markets," NBER Working Papers 13811, National Bureau of Economic Research, Inc.
- Francis X. Diebold & Kamil Yilmaz, 2008. "Measuring financial asset return and volatility spillovers, with application to global equity markets," Working Papers 08-16, Federal Reserve Bank of Philadelphia.
- Diebold, Francis X. & Yilmaz, Kamil, 2008. "Measuring financial asset return and volatilty spillovers, with application to global equity markets," CFS Working Paper Series 2008/26, Center for Financial Studies (CFS).
- Francis X. Diebold & Kamil Yilmaz, 2007. "Measuring Financial Asset Return and Volatility Spillovers, With Application to Global Equity Markets," PIER Working Paper Archive 07-002, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Diebold, Francis X. & Yilmaz, Kamil, 2007. "Measuring financial asset return and volatility spillovers, with application to global equity markets," CFS Working Paper Series 2007/02, Center for Financial Studies (CFS).
- Tom Doan, "undated". "RATS programs to replicate Diebold and Yilmaz EJ 2009 spillover calculations," Statistical Software Components RTZ00044, Boston College Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003.
"Modeling and Forecasting Realized Volatility,"
Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
- Yang, Lu, 2019. "Connectedness of economic policy uncertainty and oil price shocks in a time domain perspective," Energy Economics, Elsevier, vol. 80(C), pages 219-233.
- Pesaran, H. Hashem & Shin, Yongcheol, 1998.
"Generalized impulse response analysis in linear multivariate models,"
Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
- Pesaran, M. H. & Shin, Y., 1997. "Generalised Impulse Response Analysis in Linear Multivariate Models," Cambridge Working Papers in Economics 9710, Faculty of Economics, University of Cambridge.
- Zihui Yang & Yinggang Zhou, 2017. "Quantitative Easing and Volatility Spillovers Across Countries and Asset Classes," Management Science, INFORMS, vol. 63(2), pages 333-354, February.
- Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015.
"Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
- Kevin Sheppard & Lily Liu & Andrew J. Patton, 2013. "Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes," Economics Series Working Papers 645, University of Oxford, Department of Economics.
- Awartani, Basel & Aktham, Maghyereh & Cherif, Guermat, 2016. "The connectedness between crude oil and financial markets: Evidence from implied volatility indices," Journal of Commodity Markets, Elsevier, vol. 4(1), pages 56-69.
- David E. Rapach & Jack K. Strauss & Guofu Zhou, 2013. "International Stock Return Predictability: What Is the Role of the United States?," Journal of Finance, American Finance Association, vol. 68(4), pages 1633-1662, August.
- Ferrer, Román & Shahzad, Syed Jawad Hussain & López, Raquel & Jareño, Francisco, 2018. "Time and frequency dynamics of connectedness between renewable energy stocks and crude oil prices," Energy Economics, Elsevier, vol. 76(C), pages 1-20.
- Zhang, Yaojie & Ma, Feng & Liao, Yin, 2020. "Forecasting global equity market volatilities," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1454-1475.
- Wang, Xunxiao & Wang, Yudong, 2019. "Volatility spillovers between crude oil and Chinese sectoral equity markets: Evidence from a frequency dynamics perspective," Energy Economics, Elsevier, vol. 80(C), pages 995-1009.
- Chen, Jian & Jiang, Fuwei & Liu, Yangshu & Tu, Jun, 2017. "International volatility risk and Chinese stock return predictability," Journal of International Money and Finance, Elsevier, vol. 70(C), pages 183-203.
- Luo, Jiawen & Ji, Qiang, 2018. "High-frequency volatility connectedness between the US crude oil market and China's agricultural commodity markets," Energy Economics, Elsevier, vol. 76(C), pages 424-438.
- Zhou, Xiangyi & Zhang, Weijin & Zhang, Jie, 2012. "Volatility spillovers between the Chinese and world equity markets," Pacific-Basin Finance Journal, Elsevier, vol. 20(2), pages 247-270.
- Zhang, Dayong & Shi, Min & Shi, Xunpeng, 2018. "Oil indexation, market fundamentals, and natural gas prices: An investigation of the Asian premium in natural gas trade," Energy Economics, Elsevier, vol. 69(C), pages 33-41.
- Wei, Yu & Qin, Songkun & Li, Xiafei & Zhu, Sha & Wei, Guiwu, 2019. "Oil price fluctuation, stock market and macroeconomic fundamentals: Evidence from China before and after the financial crisis," Finance Research Letters, Elsevier, vol. 30(C), pages 23-29.
- Scruggs, John T., 2007. "Noise trader risk: Evidence from the Siamese twins," Journal of Financial Markets, Elsevier, vol. 10(1), pages 76-105, February.
- Singh, Vipul Kumar & Nishant, Shreyank & Kumar, Pawan, 2018. "Dynamic and directional network connectedness of crude oil and currencies: Evidence from implied volatility," Energy Economics, Elsevier, vol. 76(C), pages 48-63.
- Xu, Weiju & Ma, Feng & Chen, Wang & Zhang, Bing, 2019. "Asymmetric volatility spillovers between oil and stock markets: Evidence from China and the United States," Energy Economics, Elsevier, vol. 80(C), pages 310-320.
- He, Feng & Ma, Feng & Wang, Ziwei & Yang, Bohan, 2021. "Asymmetric volatility spillover between oil-importing and oil-exporting countries' economic policy uncertainty and China's energy sector," International Review of Financial Analysis, Elsevier, vol. 75(C).
- Bai, Lan & Wei, Yu & Wei, Guiwu & Li, Xiafei & Zhang, Songyun, 2021. "Infectious disease pandemic and permanent volatility of international stock markets: A long-term perspective," Finance Research Letters, Elsevier, vol. 40(C).
- Zhang, Wenting & Hamori, Shigeyuki, 2021. "Crude oil market and stock markets during the COVID-19 pandemic: Evidence from the US, Japan, and Germany," International Review of Financial Analysis, Elsevier, vol. 74(C).
- AlKathiri, Nader & Al-Rashed, Yazeed & Doshi, Tilak K. & Murphy, Frederic H., 2017. "“Asian premium” or “North Atlantic discount”: Does geographical diversification in oil trade always impose costs?," Energy Economics, Elsevier, vol. 66(C), pages 411-420.
- Goh, Jeremy C. & Jiang, Fuwei & Tu, Jun & Wang, Yuchen, 2013. "Can US economic variables predict the Chinese stock market?," Pacific-Basin Finance Journal, Elsevier, vol. 22(C), pages 69-87.
- Jian Yang & Yinggang Zhou, 2020. "Return and volatility transmission between China's and international crude oil futures markets: A first look," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(6), pages 860-884, June.
- Diebold, Francis X. & Yilmaz, Kamil, 2012.
"Better to give than to receive: Predictive directional measurement of volatility spillovers,"
International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
- Francis X. Diebold & Kamil Yilmaz, 2010. "Better to Give than to Receive: Predictive Directional Measurement of Volatility Spillovers," Koç University-TUSIAD Economic Research Forum Working Papers 1001, Koc University-TUSIAD Economic Research Forum, revised Mar 2010.
- Hasbrouck, Joel, 1995. "One Security, Many Markets: Determining the Contributions to Price Discovery," Journal of Finance, American Finance Association, vol. 50(4), pages 1175-1199, September.
- Chen, Jian & Jiang, Fuwei & Li, Hongyi & Xu, Weidong, 2016. "Chinese stock market volatility and the role of U.S. economic variables," Pacific-Basin Finance Journal, Elsevier, vol. 39(C), pages 70-83.
- Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2020. "Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions," JRFM, MDPI, vol. 13(4), pages 1-23, April.
- Wang, Yudong & Guo, Zhuangyue, 2018. "The dynamic spillover between carbon and energy markets: New evidence," Energy, Elsevier, vol. 149(C), pages 24-33.
- Feng Wu & Zhengfei Guan & Robert J. Myers, 2011. "Volatility spillover effects and cross hedging in corn and crude oil futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(11), pages 1052-1075, November.
- Kang, Sang Hoon & McIver, Ron & Yoon, Seong-Min, 2017. "Dynamic spillover effects among crude oil, precious metal, and agricultural commodity futures markets," Energy Economics, Elsevier, vol. 62(C), pages 19-32.
- Zhang, Dayong, 2017. "Oil shocks and stock markets revisited: Measuring connectedness from a global perspective," Energy Economics, Elsevier, vol. 62(C), pages 323-333.
- Ji, Qiang & Geng, Jiang-Bo & Tiwari, Aviral Kumar, 2018. "Information spillovers and connectedness networks in the oil and gas markets," Energy Economics, Elsevier, vol. 75(C), pages 71-84.
- Maghyereh, Aktham I. & Awartani, Basel & Bouri, Elie, 2016. "The directional volatility connectedness between crude oil and equity markets: New evidence from implied volatility indexes," Energy Economics, Elsevier, vol. 57(C), pages 78-93.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lee, Chien-Chiang & Zhou, Hegang & Xu, Chao & Zhang, Xiaoming, 2023. "Dynamic spillover effects among international crude oil markets from the time-frequency perspective," Resources Policy, Elsevier, vol. 80(C).
- Cui, Jinxin & Goh, Mark & Li, Binlin & Zou, Huiwen, 2021. "Dynamic dependence and risk connectedness among oil and stock markets: New evidence from time-frequency domain perspectives," Energy, Elsevier, vol. 216(C).
- Lovcha, Yuliya & Perez-Laborda, Alejandro, 2022. "Long-memory and volatility spillovers across petroleum futures," Energy, Elsevier, vol. 243(C).
- Xu, Weiju & Ma, Feng & Chen, Wang & Zhang, Bing, 2019. "Asymmetric volatility spillovers between oil and stock markets: Evidence from China and the United States," Energy Economics, Elsevier, vol. 80(C), pages 310-320.
- Liu, Zhenhua & Shi, Xunpeng & Zhai, Pengxiang & Wu, Shan & Ding, Zhihua & Zhou, Yuqin, 2021. "Tail risk connectedness in the oil-stock nexus: Evidence from a novel quantile spillover approach," Resources Policy, Elsevier, vol. 74(C).
- Evrim Mandacı, Pınar & Cagli, Efe Çaglar & Taşkın, Dilvin, 2020. "Dynamic connectedness and portfolio strategies: Energy and metal markets," Resources Policy, Elsevier, vol. 68(C).
- Zhu, Huiming & Chen, Weiyan & Hau, Liya & Chen, Qitong, 2021. "Time-frequency connectedness of crude oil, economic policy uncertainty and Chinese commodity markets: Evidence from rolling window analysis," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
- Tangyong Liu & Xu Gong & Boqiang Lin, 2021. "Analyzing the frequency dynamics of volatility spillovers across precious and industrial metal markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(9), pages 1375-1396, September.
- Yaojie Zhang & Yudong Wang & Feng Ma, 2021. "Forecasting US stock market volatility: How to use international volatility information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 733-768, August.
- Jiasha Fu & Hui Qiao, 2022. "The Time-Varying Connectedness Between China’s Crude Oil Futures and International Oil Markets: A Return and Volatility Spillover Analysis," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 341-376, December.
- Wang, Gang-Jin & Xie, Chi & Zhao, Longfeng & Jiang, Zhi-Qiang, 2018. "Volatility connectedness in the Chinese banking system: Do state-owned commercial banks contribute more?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 57(C), pages 205-230.
- Li, Xiafei & Li, Bo & Wei, Guiwu & Bai, Lan & Wei, Yu & Liang, Chao, 2021. "Return connectedness among commodity and financial assets during the COVID-19 pandemic: Evidence from China and the US," Resources Policy, Elsevier, vol. 73(C).
- Dai, Zhifeng & Zhang, Xiaotong & Yin, Zhujia, 2023. "Extreme time-varying spillovers between high carbon emission stocks, green bond and crude oil: Evidence from a quantile-based analysis," Energy Economics, Elsevier, vol. 118(C).
- Ghaemi Asl, Mahdi & Adekoya, Oluwasegun Babatunde & Rashidi, Muhammad Mahdi & Ghasemi Doudkanlou, Mohammad & Dolatabadi, Ali, 2022. "Forecast of Bayesian-based dynamic connectedness between oil market and Islamic stock indices of Islamic oil-exporting countries: Application of the cascade-forward backpropagation network," Resources Policy, Elsevier, vol. 77(C).
- Bouri, Elie & Lei, Xiaojie & Jalkh, Naji & Xu, Yahua & Zhang, Hongwei, 2021. "Spillovers in higher moments and jumps across US stock and strategic commodity markets," Resources Policy, Elsevier, vol. 72(C).
- Zhang, Dayong & Ji, Qiang & Kutan, Ali M., 2019. "Dynamic transmission mechanisms in global crude oil prices: Estimation and implications," Energy, Elsevier, vol. 175(C), pages 1181-1193.
- Lovcha, Yuliya & Perez-Laborda, Alejandro, 2020. "Dynamic frequency connectedness between oil and natural gas volatilities," Economic Modelling, Elsevier, vol. 84(C), pages 181-189.
- Guo, Li-Yang & Feng, Chao, 2021. "Are there spillovers among China's pilots for carbon emission allowances trading?," Energy Economics, Elsevier, vol. 103(C).
- Ding, Qian & Huang, Jianbai & Chen, Jinyu, 2021. "Dynamic and frequency-domain risk spillovers among oil, gold, and foreign exchange markets: Evidence from implied volatility," Energy Economics, Elsevier, vol. 102(C).
- Balcilar, Mehmet & Gabauer, David & Umar, Zaghum, 2021. "Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 73(C).
More about this item
Keywords
Return and volatility connectedness; Yuan-denominated oil futures; International crude oil futures; Frequency domain;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
- G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:81:y:2022:i:c:s1057521922000709. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.