IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v59y2022ics1062940821001844.html
   My bibliography  Save this article

How does investor attention matter for crude oil prices and returns? Evidence from time-frequency quantile causality analysis

Author

Listed:
  • Chen, Qitong
  • Zhu, Huiming
  • Yu, Dongwei
  • Hau, Liya

Abstract

This paper studies the time–frequency, nonlinear quantile relationship between investor attention (GSVI) and crude oil over the period from January 2000 to April 2020. To do so, the wavelet coherency, wavelet-based causality-in-quantiles test and quantile-on-quantile method are employed. The results indicate that first, the correlation between investor attention and crude oil is relatively high, and the highly correlated regions are concentrated from 8 to 16 months. In most cases, the GSVI is negatively correlated with the crude oil market. Additionally, under extreme market conditions, the explanatory ability is stronger than in the normal market, and it is greater in the low-frequency domain than in the high-frequency domain. Finally, investor attention has an apparent asymmetric impact on crude oil prices and returns at each scale, displaying a positive effect on the low quantiles of crude oil but a negative effect on the high quantiles across all quantiles of the GSVI. In the short term, when crude oil prices and returns are in a bear market, the larger volume of the GSVI has a greater impact on them. Moreover, the impact becomes greatest under extreme market conditions.

Suggested Citation

  • Chen, Qitong & Zhu, Huiming & Yu, Dongwei & Hau, Liya, 2022. "How does investor attention matter for crude oil prices and returns? Evidence from time-frequency quantile causality analysis," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
  • Handle: RePEc:eee:ecofin:v:59:y:2022:i:c:s1062940821001844
    DOI: 10.1016/j.najef.2021.101581
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940821001844
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2021.101581?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Tae-Hwy & Yang, Weiping, 2014. "Granger-causality in quantiles between financial markets: Using copula approach," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 70-78.
    2. He, Zhifang, 2020. "Dynamic impacts of crude oil price on Chinese investor sentiment: Nonlinear causality and time-varying effect," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 131-153.
    3. Tiwari, Aviral Kumar & Trabelsi, Nader & Alqahtani, Faisal & Bachmeier, Lance, 2019. "Modelling systemic risk and dependence structure between the prices of crude oil and exchange rates in BRICS economies: Evidence using quantile coherency and NGCoVaR approaches," Energy Economics, Elsevier, vol. 81(C), pages 1011-1028.
    4. Yao, Ting & Zhang, Yue-Jun & Ma, Chao-Qun, 2017. "How does investor attention affect international crude oil prices?," Applied Energy, Elsevier, vol. 205(C), pages 336-344.
    5. Luís Aguiar-Conraria & Maria Soares, 2011. "Oil and the macroeconomy: using wavelets to analyze old issues," Empirical Economics, Springer, vol. 40(3), pages 645-655, May.
    6. Vacha, Lukas & Barunik, Jozef, 2012. "Co-movement of energy commodities revisited: Evidence from wavelet coherence analysis," Energy Economics, Elsevier, vol. 34(1), pages 241-247.
    7. Reboredo, Juan C. & Rivera-Castro, Miguel A. & Ugolini, Andrea, 2017. "Wavelet-based test of co-movement and causality between oil and renewable energy stock prices," Energy Economics, Elsevier, vol. 61(C), pages 241-252.
    8. Zhao, Ruwei, 2020. "Quantifying the cross sectional relation of daily happiness sentiment and stock return: Evidence from US," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    9. Doko Tchatoka, Firmin & Masson, Virginie & Parry, Sean, 2019. "Linkages between oil price shocks and stock returns revisited," Energy Economics, Elsevier, vol. 82(C), pages 42-61.
    10. Campos, I. & Cortazar, G. & Reyes, T., 2017. "Modeling and predicting oil VIX: Internet search volume versus traditional mariables," Energy Economics, Elsevier, vol. 66(C), pages 194-204.
    11. Tiwari, Aviral Kumar & Nasreen, Samia & Shahbaz, Muhammad & Hammoudeh, Shawkat, 2020. "Time-frequency causality and connectedness between international prices of energy, food, industry, agriculture and metals," Energy Economics, Elsevier, vol. 85(C).
    12. Malcolm Baker & Jeffrey Wurgler, 2006. "Investor Sentiment and the Cross‐Section of Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
    13. Qadan, Mahmoud & Nama, Hazar, 2018. "Investor sentiment and the price of oil," Energy Economics, Elsevier, vol. 69(C), pages 42-58.
    14. Deeney, Peter & Cummins, Mark & Dowling, Michael & Bermingham, Adam, 2015. "Sentiment in oil markets," International Review of Financial Analysis, Elsevier, vol. 39(C), pages 179-185.
    15. Ding, Haoyuan & Kim, Hyung-Gun & Park, Sung Y., 2016. "Crude oil and stock markets: Causal relationships in tails?," Energy Economics, Elsevier, vol. 59(C), pages 58-69.
    16. Ji, Qiang & Liu, Bing-Yue & Fan, Ying, 2019. "Risk dependence of CoVaR and structural change between oil prices and exchange rates: A time-varying copula model," Energy Economics, Elsevier, vol. 77(C), pages 80-92.
    17. Sarwar, Suleman & Chen, Wei & Waheed, Rida, 2017. "Electricity consumption, oil price and economic growth: Global perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 9-18.
    18. Shahbaz, Muhammad & Balcilar, Mehmet & Abidin Ozdemir, Zeynel, 2017. "Does oil predict gold? A nonparametric causality-in-quantiles approach," Resources Policy, Elsevier, vol. 52(C), pages 257-265.
    19. Mishra, Shekhar & Sharif, Arshian & Khuntia, Sashikanta & Meo, Muhammad Saeed & Rehman Khan, Syed Abdul, 2019. "Does oil prices impede Islamic stock indices? Fresh insights from wavelet-based quantile-on-quantile approach," Resources Policy, Elsevier, vol. 62(C), pages 292-304.
    20. Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
    21. Roberto F. Aguilera & Roderick G. Eggert & Lagos C.C. Gustavo & John E. Tilton, 2009. "Depletion and the Future Availability of Petroleum Resources," The Energy Journal, , vol. 30(1), pages 141-174, January.
    22. Swamy, Vighneswara & Dharani, M. & Takeda, Fumiko, 2019. "Investor attention and Google Search Volume Index: Evidence from an emerging market using quantile regression analysis," Research in International Business and Finance, Elsevier, vol. 50(C), pages 1-17.
    23. Li, Xin & Ma, Jian & Wang, Shouyang & Zhang, Xun, 2015. "How does Google search affect trader positions and crude oil prices?," Economic Modelling, Elsevier, vol. 49(C), pages 162-171.
    24. Shahbaz, Muhammad & Zakaria, Muhammad & Shahzad, Syed Jawad Hussain & Mahalik, Mantu Kumar, 2018. "The energy consumption and economic growth nexus in top ten energy-consuming countries: Fresh evidence from using the quantile-on-quantile approach," Energy Economics, Elsevier, vol. 71(C), pages 282-301.
    25. Chuang, Chia-Chang & Kuan, Chung-Ming & Lin, Hsin-Yi, 2009. "Causality in quantiles and dynamic stock return-volume relations," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1351-1360, July.
    26. Zhang, Wei & Li, Xiao & Shen, Dehua & Teglio, Andrea, 2016. "Daily happiness and stock returns: Some international evidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 201-209.
    27. Daniel Andrei & Michael Hasler, 2015. "Investor Attention and Stock Market Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 28(1), pages 33-72.
    28. Li, Sufang & Zhang, Hu & Yuan, Di, 2019. "Investor attention and crude oil prices: Evidence from nonlinear Granger causality tests," Energy Economics, Elsevier, vol. 84(C).
    29. Paresh Kumar Narayan & Kumari Ranjeeni & Deepa Bannigidadmath, 2017. "New Evidence of Psychological Barrier from the Oil Market," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 18(4), pages 457-469, October.
    30. Afkhami, Mohamad & Cormack, Lindsey & Ghoddusi, Hamed, 2017. "Google search keywords that best predict energy price volatility," Energy Economics, Elsevier, vol. 67(C), pages 17-27.
    31. James D. Hamilton, 2009. "Understanding Crude Oil Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 179-206.
    32. Reboredo, Juan C. & Rivera-Castro, Miguel A., 2013. "A wavelet decomposition approach to crude oil price and exchange rate dependence," Economic Modelling, Elsevier, vol. 32(C), pages 42-57.
    33. Fenghua Wen & Jihong Xiao & Chuangxia Huang & Xiaohua Xia, 2018. "Interaction between oil and US dollar exchange rate: nonlinear causality, time-varying influence and structural breaks in volatility," Applied Economics, Taylor & Francis Journals, vol. 50(3), pages 319-334, January.
    34. Vozlyublennaia, Nadia, 2014. "Investor attention, index performance, and return predictability," Journal of Banking & Finance, Elsevier, vol. 41(C), pages 17-35.
    35. Brad M. Barber & Terrance Odean, 2008. "All That Glitters: The Effect of Attention and News on the Buying Behavior of Individual and Institutional Investors," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 785-818, April.
    36. Nabila Jawadi & Fredj Jawadi & Abdoulkarim Idi Cheffou, 2020. "Computing the Time-Varying Effects of Investor Attention in Islamic Stock Returns," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 131-143, June.
    37. Zhifang He & Fangzhao Zhou & Xiaohua Xia & Fenghua Wen & Yiyuan Huang, 2019. "Interaction between Oil Price and Investor Sentiment: Nonlinear Causality, Time- Varying Influence, and Asymmetric Effect," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 55(12), pages 2756-2773, September.
    38. Jiang, Yonghong & Feng, Qidi & Mo, Bin & Nie, He, 2020. "Visiting the effects of oil price shocks on exchange rates: Quantile-on-quantile and causality-in-quantiles approaches," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    39. Ding Du & Ronald J Gunderson & Xiaobing Zhao, 2016. "Investor sentiment and oil prices," Journal of Asset Management, Palgrave Macmillan, vol. 17(2), pages 73-88, March.
    40. Afshan, Sahar & Sharif, Arshian & Loganathan, Nanthakumar & Jammazi, Rania, 2018. "Time–frequency causality between stock prices and exchange rates: Further evidences from cointegration and wavelet analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 225-244.
    41. Deng-Kui SI & Xiao-Lin LI & Tsangyao CHANG & Lu BAI, 2018. "Co-movement and Causality between Nominal Exchange Rates and Interest Rate Differentials in BRICS Countries: A Wavelet Analysis," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 5-19, December.
    42. Han, Liyan & Xu, Yang & Yin, Libo, 2018. "Does investor attention matter? The attention-return relationships in FX markets," Economic Modelling, Elsevier, vol. 68(C), pages 644-660.
    43. Peng, Lin & Xiong, Wei, 2006. "Investor attention, overconfidence and category learning," Journal of Financial Economics, Elsevier, vol. 80(3), pages 563-602, June.
    44. Yue-Jun Zhang & Shu-Hui Li, 2019. "The impact of investor sentiment on crude oil market risks: evidence from the wavelet approach," Quantitative Finance, Taylor & Francis Journals, vol. 19(8), pages 1357-1371, August.
    45. Matthias Bank & Martin Larch & Georg Peter, 2011. "Google search volume and its influence on liquidity and returns of German stocks," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 25(3), pages 239-264, September.
    46. Ozturk, Ilhan, 2010. "A literature survey on energy-growth nexus," Energy Policy, Elsevier, vol. 38(1), pages 340-349, January.
    47. Seasholes, Mark S. & Wu, Guojun, 2007. "Predictable behavior, profits, and attention," Journal of Empirical Finance, Elsevier, vol. 14(5), pages 590-610, December.
    48. An, Haizhong & Gao, Xiangyun & Fang, Wei & Ding, Yinghui & Zhong, Weiqiong, 2014. "Research on patterns in the fluctuation of the co-movement between crude oil futures and spot prices: A complex network approach," Applied Energy, Elsevier, vol. 136(C), pages 1067-1075.
    49. Minghua Dong & Xiong Xiong & Xiao Li & Dehua Shen, 2018. "Weibo Attention and Stock Market Performance: Some Empirical Evidence," Complexity, Hindawi, vol. 2018, pages 1-8, September.
    50. Zhu, Huiming & Guo, Yawei & You, Wanhai & Xu, Yaqin, 2016. "The heterogeneity dependence between crude oil price changes and industry stock market returns in China: Evidence from a quantile regression approach," Energy Economics, Elsevier, vol. 55(C), pages 30-41.
    51. Das, Debojyoti & Kumar, Surya Bhushan & Tiwari, Aviral Kumar & Shahbaz, Muhammad & Hasim, Haslifah M., 2018. "On the relationship of gold, crude oil, stocks with financial stress: A causality-in-quantiles approach," Finance Research Letters, Elsevier, vol. 27(C), pages 169-174.
    52. Polanco-Martínez, J.M. & Fernández-Macho, J. & Neumann, M.B. & Faria, S.H., 2018. "A pre-crisis vs. crisis analysis of peripheral EU stock markets by means of wavelet transform and a nonlinear causality test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1211-1227.
    53. Benhmad, François, 2012. "Modeling nonlinear Granger causality between the oil price and U.S. dollar: A wavelet based approach," Economic Modelling, Elsevier, vol. 29(4), pages 1505-1514.
    54. Naifar, Nader & Al Dohaiman, Mohammed Saleh, 2013. "Nonlinear analysis among crude oil prices, stock markets' return and macroeconomic variables," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 416-431.
    55. Pal, Debdatta & Mitra, Subrata K., 2019. "Oil price and automobile stock return co-movement: A wavelet coherence analysis," Economic Modelling, Elsevier, vol. 76(C), pages 172-181.
    56. Sim, Nicholas & Zhou, Hongtao, 2015. "Oil prices, US stock return, and the dependence between their quantiles," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 1-8.
    57. Han, Liyan & Lv, Qiuna & Yin, Libo, 2017. "Can investor attention predict oil prices?," Energy Economics, Elsevier, vol. 66(C), pages 547-558.
    58. Kang, Sang Hoon & McIver, Ron & Yoon, Seong-Min, 2017. "Dynamic spillover effects among crude oil, precious metal, and agricultural commodity futures markets," Energy Economics, Elsevier, vol. 62(C), pages 19-32.
    59. Xiao, Jihong & Zhou, Min & Wen, Fengming & Wen, Fenghua, 2018. "Asymmetric impacts of oil price uncertainty on Chinese stock returns under different market conditions: Evidence from oil volatility index," Energy Economics, Elsevier, vol. 74(C), pages 777-786.
    60. Yang, Lu & Cai, Xiao Jing & Hamori, Shigeyuki, 2017. "Does the crude oil price influence the exchange rates of oil-importing and oil-exporting countries differently? A wavelet coherence analysis," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 536-547.
    61. Mo, Bin & Chen, Cuiqiong & Nie, He & Jiang, Yonghong, 2019. "Visiting effects of crude oil price on economic growth in BRICS countries: Fresh evidence from wavelet-based quantile-on-quantile tests," Energy, Elsevier, vol. 178(C), pages 234-251.
    62. Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu, 2016. "Oil price and exchange rate in India: Fresh evidence from continuous wavelet approach and asymmetric, multi-horizon Granger-causality tests," Applied Energy, Elsevier, vol. 179(C), pages 272-283.
    63. François Benhmad, 2012. "Modeling Nonlinear Granger Causality between the Oil price and U.S Dollar," Post-Print hal-03062497, HAL.
    64. Huiming Zhu & Yawei Guo & Wanhai You, 2015. "An empirical research of crude oil price changes and stock market in China: evidence from the structural breaks and quantile regression," Applied Economics, Taylor & Francis Journals, vol. 47(56), pages 6055-6074, December.
    65. Jeong, Kiho & Härdle, Wolfgang K. & Song, Song, 2012. "A Consistent Nonparametric Test For Causality In Quantile," Econometric Theory, Cambridge University Press, vol. 28(4), pages 861-887, August.
    66. Wang, Yilin & Zhang, Zeming & Li, Xiafei & Chen, Xiaodan & Wei, Yu, 2020. "Dynamic return connectedness across global commodity futures markets: Evidence from time and frequency domains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    67. Zhao, Ruwei, 2020. "Quantifying the cross sectional relation of daily happiness sentiment and return skewness: Evidence from US industries," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    68. Alzahrani, Mohammed & Masih, Mansur & Al-Titi, Omar, 2014. "Linear and non-linear Granger causality between oil spot and futures prices: A wavelet based test," Journal of International Money and Finance, Elsevier, vol. 48(PA), pages 175-201.
    69. Dai, Xingyu & Wang, Qunwei & Zha, Donglan & Zhou, Dequn, 2020. "Multi-scale dependence structure and risk contagion between oil, gold, and US exchange rate: A wavelet-based vine-copula approach," Energy Economics, Elsevier, vol. 88(C).
    70. Shahbaz, Muhammad & Sarwar, Suleman & Chen, Wei & Malik, Muhammad Nasir, 2017. "Dynamics of electricity consumption, oil price and economic growth: Global perspective," Energy Policy, Elsevier, vol. 108(C), pages 256-270.
    71. Joseph, Kissan & Babajide Wintoki, M. & Zhang, Zelin, 2011. "Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1116-1127, October.
    72. Zhang, Hao & Cai, Guixin & Yang, Dongxiao, 2020. "The impact of oil price shocks on clean energy stocks: Fresh evidence from multi-scale perspective," Energy, Elsevier, vol. 196(C).
    73. Aviral Kumar Tiwari & Adeolu O. Adewuyi & David Roubaud, 2019. "Dependence between the global gold market and emerging stock markets (E7+1): Evidence from Granger causality using quantile and quantile‐on‐quantile regression methods," The World Economy, Wiley Blackwell, vol. 42(7), pages 2172-2214, July.
    74. Li, Rong & Li, Sufang & Yuan, Di & Zhu, Huiming, 2021. "Investor attention and cryptocurrency: Evidence from wavelet-based quantile Granger causality analysis," Research in International Business and Finance, Elsevier, vol. 56(C).
    75. Chi Xie & Yuanxia Wang, 2017. "Does Online Investor Sentiment Affect the Asset Price Movement? Evidence from the Chinese Stock Market," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-11, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Behzad Alimoradian & Jeffrey Jakubiak & Stephane Loisel & Yahia Salhi, 2023. "Understanding Key Drivers of Participant Cash Flows for Individually Managed Stable Value Funds," Risks, MDPI, vol. 11(8), pages 1-27, August.
    2. Fiszeder, Piotr & Fałdziński, Marcin & Molnár, Peter, 2023. "Attention to oil prices and its impact on the oil, gold and stock markets and their covariance," Energy Economics, Elsevier, vol. 120(C).
    3. Wang, Xuerui & Li, Xiangyu & Li, Shaoting, 2022. "Point and interval forecasting system for crude oil price based on complete ensemble extreme-point symmetric mode decomposition with adaptive noise and intelligent optimization algorithm," Applied Energy, Elsevier, vol. 328(C).
    4. Li, Sufang & Xu, Qiufan & Lv, Yixue & Yuan, Di, 2022. "Public attention, oil and gold markets during the COVID-19: Evidence from time-frequency analysis," Resources Policy, Elsevier, vol. 78(C).
    5. Pham, Linh & Cepni, Oguzhan, 2022. "Extreme directional spillovers between investor attention and green bond markets," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 186-210.
    6. Panpan Zhu & Qingjie Zhou & Yinpeng Zhang, 2024. "Investor attention and consumer price index inflation rate: Evidence from the United States," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    7. Gao, Yang & Zhou, Yueyi & Zhao, Longfeng, 2024. "Quantile interdependence and network connectedness between China's green financial and energy markets," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 1148-1177.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Jihong & Wen, Fenghua & He, Zhifang, 2023. "Impact of geopolitical risks on investor attention and speculation in the oil market: Evidence from nonlinear and time-varying analysis," Energy, Elsevier, vol. 267(C).
    2. Xiao, Jihong & Wang, Yudong, 2021. "Investor attention and oil market volatility: Does economic policy uncertainty matter?," Energy Economics, Elsevier, vol. 97(C).
    3. Goodell, John W. & Kumar, Satish & Li, Xiao & Pattnaik, Debidutta & Sharma, Anuj, 2022. "Foundations and research clusters in investor attention: Evidence from bibliometric and topic modelling analysis," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 511-529.
    4. Li, Sufang & Zhang, Hu & Yuan, Di, 2019. "Investor attention and crude oil prices: Evidence from nonlinear Granger causality tests," Energy Economics, Elsevier, vol. 84(C).
    5. Yang, Dong-Xiao & Wu, Bi-Bo & Tong, Jing-Yang, 2021. "Dynamics and causality of oil price shocks on commodities: Quantile-on-quantile and causality-in-quantiles methods," Resources Policy, Elsevier, vol. 74(C).
    6. Wang, Lu & Ma, Feng & Niu, Tianjiao & Liang, Chao, 2021. "The importance of extreme shock: Examining the effect of investor sentiment on the crude oil futures market," Energy Economics, Elsevier, vol. 99(C).
    7. Ramos, Sofia B. & Latoeiro, Pedro & Veiga, Helena, 2020. "Limited attention, salience of information and stock market activity," Economic Modelling, Elsevier, vol. 87(C), pages 92-108.
    8. Li, Sufang & Xu, Qiufan & Lv, Yixue & Yuan, Di, 2022. "Public attention, oil and gold markets during the COVID-19: Evidence from time-frequency analysis," Resources Policy, Elsevier, vol. 78(C).
    9. Fiszeder, Piotr & Fałdziński, Marcin & Molnár, Peter, 2023. "Attention to oil prices and its impact on the oil, gold and stock markets and their covariance," Energy Economics, Elsevier, vol. 120(C).
    10. Liu, Yuanyuan & Niu, Zibo & Suleman, Muhammad Tahir & Yin, Libo & Zhang, Hongwei, 2022. "Forecasting the volatility of crude oil futures: The role of oil investor attention and its regime switching characteristics under a high-frequency framework," Energy, Elsevier, vol. 238(PA).
    11. Chen, Zhongdong & Craig, Karen Ann, 2023. "Active attention, retail investor base, and stock returns," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    12. Cheng, Feiyang & Chiao, Chaoshin & Wang, Chunfeng & Fang, Zhenming & Yao, Shouyu, 2021. "Does retail investor attention improve stock liquidity? A dynamic perspective," Economic Modelling, Elsevier, vol. 94(C), pages 170-183.
    13. Youssef, Manel & Mokni, Khaled, 2020. "Modeling the relationship between oil and USD exchange rates: Evidence from a regime-switching-quantile regression approach," Journal of Multinational Financial Management, Elsevier, vol. 55(C).
    14. Dai, Xingyu & Wang, Qunwei & Zha, Donglan & Zhou, Dequn, 2020. "Multi-scale dependence structure and risk contagion between oil, gold, and US exchange rate: A wavelet-based vine-copula approach," Energy Economics, Elsevier, vol. 88(C).
    15. Oguzhan Cepni, Duc Khuong Nguyen, and Ahmet Sensoy, 2022. "News Media and Attention Spillover across Energy Markets: A Powerful Predictor of Crude Oil Futures Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    16. Chen, Rongda & Bao, Weiwei & Jin, Chenglu, 2021. "Investor sentiment and predictability for volatility on energy futures Markets: Evidence from China," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 112-129.
    17. González-Fernández, Marcos & González-Velasco, Carmen, 2020. "A sentiment index to measure sovereign risk using Google data," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 406-418.
    18. Maghyereh, Aktham & Awartani, Basel & Abdoh, Hussein, 2020. "The effects of investor emotions sentiments on crude oil returns: A time and frequency dynamics analysis," International Economics, Elsevier, vol. 162(C), pages 110-124.
    19. Lin, Boqiang & Chen, Yiyang & Gong, Xu, 2024. "Stress from attention: The relationship between climate change attention and crude oil markets," Journal of Commodity Markets, Elsevier, vol. 34(C).
    20. Wu, Bi-Bo, 2021. "The dynamics of oil on China’s commodity sectors: What can we learn from a quantile perspective?," Journal of Commodity Markets, Elsevier, vol. 23(C).

    More about this item

    Keywords

    Investor attention; Crude oil; Time–frequency; Causality-in-quantiles test; Quantile-on-quantile regression;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • F20 - International Economics - - International Factor Movements and International Business - - - General
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:59:y:2022:i:c:s1062940821001844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.