Separating the signal from the noise – Financial machine learning for Twitter
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jedc.2020.103895
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Teresa L. Ju & Yao Chin Lin & Nhu-Hang Ha, 2014. "Proactive Assessment for Collaboration Success," SAGE Open, , vol. 4(3), pages 21582440145, July.
- Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017.
"Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500,"
European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
- Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2016. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," FAU Discussion Papers in Economics 03/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Christopher Krauss & Xuan Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01515120, HAL.
- Sanjiv R. Das & Mike Y. Chen, 2007. "Yahoo! for Amazon: Sentiment Extraction from Small Talk on the Web," Management Science, INFORMS, vol. 53(9), pages 1375-1388, September.
- Xu, Wei & Chen, Yuehuan & Coleman, Conrad & Coleman, Thomas F., 2018. "Moment matching machine learning methods for risk management of large variable annuity portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 1-20.
- Thomas Günter Fischer & Christopher Krauss & Alexander Deinert, 2019. "Statistical Arbitrage in Cryptocurrency Markets," JRFM, MDPI, vol. 12(1), pages 1-15, February.
- Bekiros, Stelios D., 2010. "Heterogeneous trading strategies with adaptive fuzzy Actor-Critic reinforcement learning: A behavioral approach," Journal of Economic Dynamics and Control, Elsevier, vol. 34(6), pages 1153-1170, June.
- Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
- Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 2006.
"Pairs Trading: Performance of a Relative-Value Arbitrage Rule,"
The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 797-827.
- Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 1998. "Pairs Trading: Performance of a Relative Value Arbitrage Rule," Yale School of Management Working Papers ysm26, Yale School of Management.
- William Goetzmann & Evan g. Gatev & K. Geert Rouwenhorst, 1998. "Pairs Trading: Performance of a Relative Value Arbitrage Rule," Yale School of Management Working Papers ysm3, Yale School of Management.
- William N. Goetzmann & Evan Geov Gatev & K. Geert Rouwenhorst, 1998. "Pairs Trading: Performance of a Relative Value Arbitrage Rule," Yale School of Management Working Papers ysm109, Yale School of Management.
- Evan G. Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 1999. "Pairs Trading: Performance of a Relative Value Arbitrage Rule," NBER Working Papers 7032, National Bureau of Economic Research, Inc.
- Christopher Krauss & Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01768895, HAL.
- Jegadeesh, Narasimhan & Livnat, Joshua, 2006. "Revenue surprises and stock returns," Journal of Accounting and Economics, Elsevier, vol. 41(1-2), pages 147-171, April.
- Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
- Paul C. Tetlock & Maytal Saar‐Tsechansky & Sofus Macskassy, 2008. "More Than Words: Quantifying Language to Measure Firms' Fundamentals," Journal of Finance, American Finance Association, vol. 63(3), pages 1437-1467, June.
- Matthew Gentzkow & Bryan Kelly & Matt Taddy, 2019. "Text as Data," Journal of Economic Literature, American Economic Association, vol. 57(3), pages 535-574, September.
- Leung, Mark T. & Daouk, Hazem & Chen, An-Sing, 2000. "Forecasting stock indices: a comparison of classification and level estimation models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 173-190.
- Huck, Nicolas, 2019. "Large data sets and machine learning: Applications to statistical arbitrage," European Journal of Operational Research, Elsevier, vol. 278(1), pages 330-342.
- Zheng Tracy Ke & Bryan T. Kelly & Dacheng Xiu, 2019. "Predicting Returns With Text Data," NBER Working Papers 26186, National Bureau of Economic Research, Inc.
- Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
- Timm O. Sprenger & Philipp G. Sandner & Andranik Tumasjan & Isabell M. Welpe, 2014. "News or Noise? Using Twitter to Identify and Understand Company-specific News Flow," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 41(7-8), pages 791-830, September.
- Clifford S. Asness & Tobias J. Moskowitz & Lasse Heje Pedersen, 2013. "Value and Momentum Everywhere," Journal of Finance, American Finance Association, vol. 68(3), pages 929-985, June.
- Gérard Biau & Erwan Scornet, 2016. "Rejoinder on: A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 264-268, June.
- Nicolas Huck, 2019. "Large data sets and machine learning: Applications to statistical arbitrage," Post-Print hal-02143971, HAL.
- Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
- Marco Avellaneda & Jeong-Hyun Lee, 2010. "Statistical arbitrage in the US equities market," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 761-782.
- Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
- Allen H. Huang & Reuven Lehavy & Amy Y. Zang & Rong Zheng, 2018. "Analyst Information Discovery and Interpretation Roles: A Topic Modeling Approach," Management Science, INFORMS, vol. 64(6), pages 2833-2855, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Schnaubelt, Matthias, 2022. "Deep reinforcement learning for the optimal placement of cryptocurrency limit orders," European Journal of Operational Research, Elsevier, vol. 296(3), pages 993-1006.
- Thomas Dierckx & Jesse Davis & Wim Schoutens, 2022. "Nowcasting Stock Implied Volatility with Twitter," Papers 2301.00248, arXiv.org.
- Xiaohong Shen & Gaoshan Wang & Yue Wang & Alfred Peris, 2021. "The Influence of Research Reports on Stock Returns: The Mediating Effect of Machine-Learning-Based Investor Sentiment," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-14, December.
- Schnaubelt, Matthias & Seifert, Oleg, 2020. "Valuation ratios, surprises, uncertainty or sentiment: How does financial machine learning predict returns from earnings announcements?," FAU Discussion Papers in Economics 04/2020, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Herrera, Gabriel Paes & Constantino, Michel & Su, Jen-Je & Naranpanawa, Athula, 2022. "Renewable energy stocks forecast using Twitter investor sentiment and deep learning," Energy Economics, Elsevier, vol. 114(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Schnaubelt, Matthias & Fischer, Thomas G. & Krauss, Christopher, 2018. "Separating the signal from the noise - financial machine learning for Twitter," FAU Discussion Papers in Economics 14/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Schnaubelt, Matthias & Seifert, Oleg, 2020. "Valuation ratios, surprises, uncertainty or sentiment: How does financial machine learning predict returns from earnings announcements?," FAU Discussion Papers in Economics 04/2020, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
- Fabian Waldow & Matthias Schnaubelt & Christopher Krauss & Thomas Günter Fischer, 2021. "Machine Learning in Futures Markets," JRFM, MDPI, vol. 14(3), pages 1-14, March.
- Han, Chulwoo & He, Zhaodong & Toh, Alenson Jun Wei, 2023. "Pairs trading via unsupervised learning," European Journal of Operational Research, Elsevier, vol. 307(2), pages 929-947.
- Alexander Jakob Dautel & Wolfgang Karl Härdle & Stefan Lessmann & Hsin-Vonn Seow, 2020.
"Forex exchange rate forecasting using deep recurrent neural networks,"
Digital Finance, Springer, vol. 2(1), pages 69-96, September.
- Dautel, Alexander J. & Härdle, Wolfgang Karl & Lessmann, Stefan & Seow, Hsin-Vonn, 2019. "Forex Exchange Rate Forecasting Using Deep Recurrent Neural Networks," IRTG 1792 Discussion Papers 2019-008, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Dautel, Alexander Jakob & Härdle, Wolfgang Karl & Lessmann, Stefan & Seow, Hsin-Vonn, 2020. "Forex exchange rate forecasting using deep recurrent neural networks," IRTG 1792 Discussion Papers 2020-006, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
- Erdinc Akyildirim & Ahmet Goncu & Alper Hekimoglu & Duc Khuong Nguyen & Ahmet Sensoy, 2023.
"Statistical arbitrage: factor investing approach,"
OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(4), pages 1295-1331, December.
- Erdinc Akyildirim & Ahmet Goncu & Alper Hekimoglu & Duc Khuong Nguyen & Ahmet Sensoy, 2021. "Statistical Arbitrage: Factor Investing Approach," Working Papers 2021-003, Department of Research, Ipag Business School.
- Akyildirim, Erdinc & Goncu, Ahmet & Hekimoglu, Alper & Nguyen, Duc Khuong & Sensoy, Ahmet, 2021. "Statistical arbitrage: Factor investing approach," MPRA Paper 105766, University Library of Munich, Germany.
- Charles W. Calomiris & Nida Çakır Melek & Harry Mamaysky, 2021. "Predicting the Oil Market," NBER Working Papers 29379, National Bureau of Economic Research, Inc.
- Thomas Günter Fischer & Christopher Krauss & Alexander Deinert, 2019. "Statistical Arbitrage in Cryptocurrency Markets," JRFM, MDPI, vol. 12(1), pages 1-15, February.
- Rubesam, Alexandre, 2022.
"Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market,"
Emerging Markets Review, Elsevier, vol. 51(PB).
- Alexandre Rubesam, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Post-Print hal-03707365, HAL.
- Kasper Johansson & Thomas Schmelzer & Stephen Boyd, 2024. "Finding Moving-Band Statistical Arbitrages via Convex-Concave Optimization," Papers 2402.08108, arXiv.org.
- Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
- Thomas Renault, 2020.
"Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages,"
Digital Finance, Springer, vol. 2(1), pages 1-13, September.
- Thomas Renault, 2020. "Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03205149, HAL.
- Thomas Renault, 2020. "Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages," Post-Print hal-03205149, HAL.
- Renault, Thomas, 2017.
"Intraday online investor sentiment and return patterns in the U.S. stock market,"
Journal of Banking & Finance, Elsevier, vol. 84(C), pages 25-40.
- Thomas Renault, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Post-Print hal-03205113, HAL.
- Rama Cont & Mihai Cucuringu & Chao Zhang, 2021. "Cross-Impact of Order Flow Imbalance in Equity Markets," Papers 2112.13213, arXiv.org, revised Jun 2023.
- Simon Fritzsch & Philipp Scharner & Gregor Weiß, 2021. "Estimating the relation between digitalization and the market value of insurers," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(3), pages 529-567, September.
- Kolesnikova, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2019. "Can Deep Learning Predict Risky Retail Investors? A Case Study in Financial Risk Behavior Forecasting," IRTG 1792 Discussion Papers 2019-023, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Mao, Huina & Counts, Scott & Bollen, Johan, 2015. "Quantifying the effects of online bullishness on international financial markets," Statistics Paper Series 9, European Central Bank.
- Ardia, David & Bluteau, Keven & Boudt, Kris, 2022.
"Media abnormal tone, earnings announcements, and the stock market,"
Journal of Financial Markets, Elsevier, vol. 61(C).
- David Ardia & Keven Bluteau & Kris Boudt, 2021. "Media abnormal tone, earnings announcements, and the stock market," Papers 2110.10800, arXiv.org.
More about this item
Keywords
Finance; Statistical arbitrage; Machine learning; Natural language processing;All these keywords.
JEL classification:
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
- G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
- G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:114:y:2020:i:c:s0165188920300634. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.