IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v50y2015icp599-607.html
   My bibliography  Save this article

Combining accounting data and a structural model for predicting credit ratings: Empirical evidence from European listed firms

Author

Listed:
  • Doumpos, Michael
  • Niklis, Dimitrios
  • Zopounidis, Constantin
  • Andriosopoulos, Kostas

Abstract

Ratings issued by credit rating agencies (CRAs) play an important role in the global financial environment. Among other issues, past studies have explored the potential for predicting these ratings using a variety of explanatory factors and modeling approaches. This paper describes a multi-criteria classification approach that combines accounting data with a structural default prediction model in order to obtain improved predictions and test the incremental information that a structural model provides in this context. Empirical results are presented for a panel data set of European listed firms during the period 2002–2012. The analysis indicates that a distance-to-default measure obtained from a structural model adds significant information compared to popular financial ratios. Nevertheless, its power is considerably weakened when market capitalization is also considered. The robustness of the results is examined over time and under different rating category specifications.

Suggested Citation

  • Doumpos, Michael & Niklis, Dimitrios & Zopounidis, Constantin & Andriosopoulos, Kostas, 2015. "Combining accounting data and a structural model for predicting credit ratings: Empirical evidence from European listed firms," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 599-607.
  • Handle: RePEc:eee:jbfina:v:50:y:2015:i:c:p:599-607
    DOI: 10.1016/j.jbankfin.2014.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426614000247
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2014.01.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Das, Sanjiv R. & Hanouna, Paul & Sarin, Atulya, 2009. "Accounting-based versus market-based cross-sectional models of CDS spreads," Journal of Banking & Finance, Elsevier, vol. 33(4), pages 719-730, April.
    2. Hwang, Ruey-Ching & Chung, Huimin & Chu, C.K., 2010. "Predicting issuer credit ratings using a semiparametric method," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 120-137, January.
    3. Zvika Afik & Ohad Arad & Koresh Galil, 2012. "Using Merton model: an empirical assessment of alternatives," Working Papers 1202, Ben-Gurion University of the Negev, Department of Economics.
    4. Marco Pagano & Paolo Volpin, 2010. "Credit ratings failures and policy options [Cash-in-the-market pricing and optimal resolution of bank failures]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 25(62), pages 401-431.
    5. Jeon, Doh-Shin & Lovo, Stefano, 2013. "Credit rating industry: A helicopter tour of stylized facts and recent theories," International Journal of Industrial Organization, Elsevier, vol. 31(5), pages 643-651.
    6. Ruey-Ching Hwang, 2013. "Forecasting credit ratings with the varying-coefficient model," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1947-1965, December.
    7. Li, Ming-Yuan Leon & Miu, Peter, 2010. "A hybrid bankruptcy prediction model with dynamic loadings on accounting-ratio-based and market-based information: A binary quantile regression approach," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 818-833, September.
    8. Mizen, Paul & Tsoukas, Serafeim, 2012. "Forecasting US bond default ratings allowing for previous and initial state dependence in an ordered probit model," International Journal of Forecasting, Elsevier, vol. 28(1), pages 273-287.
    9. Constantin Zopounidis & Michael Doumpos, 2013. "Multicriteria decision systems for financial problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 241-261, July.
    10. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    11. Michael Doumpos & Fotios Pasiouras, 2005. "Developing and Testing Models for Replicating Credit Ratings: A Multicriteria Approach," Computational Economics, Springer;Society for Computational Economics, vol. 25(4), pages 327-341, June.
    12. Fatima Alali & Asokan Anandarajan & Wei Jiang, 2012. "The effect of corporate governance on firm’s credit ratings: further evidence using governance score in the United States," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 52(2), pages 291-312, June.
    13. Charitou, Andreas & Dionysiou, Dionysia & Lambertides, Neophytos & Trigeorgis, Lenos, 2013. "Alternative bankruptcy prediction models using option-pricing theory," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2329-2341.
    14. Krahnen, Jan Pieter & Weber, Martin, 2001. "Generally accepted rating principles: A primer," Journal of Banking & Finance, Elsevier, vol. 25(1), pages 3-23, January.
    15. Chen, Long & Zhao, Xinlei, 2006. "On the relation between the market-to-book ratio, growth opportunity, and leverage ratio," Finance Research Letters, Elsevier, vol. 3(4), pages 253-266, December.
    16. Constantin Zopounidis & Michael Doumpos, 2013. "Rejoinder on: Multicriteria decision systems for financial problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 282-286, July.
    17. Cheng, Mei & Neamtiu, Monica, 2009. "An empirical analysis of changes in credit rating properties: Timeliness, accuracy and volatility," Journal of Accounting and Economics, Elsevier, vol. 47(1-2), pages 108-130, March.
    18. Agarwal, Vineet & Taffler, Richard, 2008. "Comparing the performance of market-based and accounting-based bankruptcy prediction models," Journal of Banking & Finance, Elsevier, vol. 32(8), pages 1541-1551, August.
    19. Malcolm Baker & Jeffrey Wurgler, 2002. "Market Timing and Capital Structure," Journal of Finance, American Finance Association, vol. 57(1), pages 1-32, February.
    20. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    21. repec:bla:jfinan:v:59:y:2004:i:2:p:831-868 is not listed on IDEAS
    22. Treacy, William F. & Carey, Mark, 2000. "Credit risk rating systems at large US banks," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 167-201, January.
    23. Fotios Pasiouras & Chrysovalantis Gaganis & Constantin Zopounidis, 2006. "The impact of bank regulations, supervision, market structure, and bank characteristics on individual bank ratings: A cross-country analysis," Review of Quantitative Finance and Accounting, Springer, vol. 27(4), pages 403-438, December.
    24. Sreedhar T. Bharath & Tyler Shumway, 2008. "Forecasting Default with the Merton Distance to Default Model," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1339-1369, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rosa-Isabel González-Muñoz & Jesús Molina-Muñoz & Andrés Mora-Valencia & Javier Perote, 2024. "Real Options Volatility Surface for Valuing Renewable Energy Projects," Energies, MDPI, vol. 17(5), pages 1-13, March.
    2. Yan Liu & Zhan-jiang Li & Xue-jun Zhen, 2018. "Empirical Study on Indicators Selection Model Based on Nonparametric -Nearest Neighbor Identification and R Clustering Analysis," Complexity, Hindawi, vol. 2018, pages 1-9, April.
    3. Lorena Caridad y López del Río & María de los Baños García-Moreno García & José Rafael Caro-Barrera & Manuel Adolfo Pérez-Priego & Daniel Caridad y López del Río, 2021. "Moody’s Ratings Statistical Forecasting for Industrial and Retail Firms," Economies, MDPI, vol. 9(4), pages 1-15, October.
    4. Sim, Jaehun & Kim, Chae-Soo, 2019. "The value of renewable energy research and development investments with default consideration," Renewable Energy, Elsevier, vol. 143(C), pages 530-539.
    5. Modina, Michele & Pietrovito, Filomena & Gallucci, Carmen & Formisano, Vincenzo, 2023. "Predicting SMEs’ default risk: Evidence from bank-firm relationship data," The Quarterly Review of Economics and Finance, Elsevier, vol. 89(C), pages 254-268.
    6. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    7. Charlie X. Cai & Paul B. McGuinness & Qi Zhang, 2018. "Credit scores and the performance of newly-listed stocks: an exploration of the Chinese A-share market," Review of Quantitative Finance and Accounting, Springer, vol. 51(1), pages 79-111, July.
    8. Carbone, Sante & Giuzio, Margherita & Kapadia, Sujit & Krämer, Johannes Sebastian & Nyholm, Ken & Vozian, Katia, 2021. "The low-carbon transition, climate commitments and firm credit risk," Working Paper Series 2631, European Central Bank.
    9. Yukiko Konno & Yuki Itoh, 2016. "An alternative to the standardized approach for assessing credit risk under the Basel Accords," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1220119-122, December.
    10. Jaspreet Kaur & Madhu Vij & Ajay Kumar Chauhan, 2023. "Signals influencing corporate credit ratings—a systematic literature review," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 50(1), pages 91-114, March.
    11. Carlo Alberto Magni & Stefano Malagoli & Andrea Marchioni & Giovanni Mastroleo, 2020. "Rating firms and sensitivity analysis," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(12), pages 1940-1958, December.
    12. Jiang, Cuiqing & Lyu, Ximei & Yuan, Yufei & Wang, Zhao & Ding, Yong, 2022. "Mining semantic features in current reports for financial distress prediction: Empirical evidence from unlisted public firms in China," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1086-1099.
    13. Chi, Guotai & Dong, Bingjie & Zhou, Ying & Jin, Peng, 2024. "Long-horizon predictions of credit default with inconsistent customers," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    14. Sermpinis, Georgios & Tsoukas, Serafeim & Zhang, Ping, 2018. "Modelling market implied ratings using LASSO variable selection techniques," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 19-35.
    15. Kadziński, Miłosz & Ciomek, Krzysztof, 2021. "Active learning strategies for interactive elicitation of assignment examples for threshold-based multiple criteria sorting," European Journal of Operational Research, Elsevier, vol. 293(2), pages 658-680.
    16. Alessandro Bitetto & Stefano Filomeni & Michele Modina, 2021. "Understanding corporate default using Random Forest: The role of accounting and market information," DEM Working Papers Series 205, University of Pavia, Department of Economics and Management.
    17. Stefano Filomeni & Udichibarna Bose & Anastasios Megaritis & Athanasios Triantafyllou, 2024. "Can market information outperform hard and soft information in predicting corporate defaults?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 3567-3592, July.
    18. Goldmann, Leonie & Crook, Jonathan & Calabrese, Raffaella, 2024. "A new ordinal mixed-data sampling model with an application to corporate credit rating levels," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1111-1126.
    19. Doumpos, Michalis & Figueira, José Rui, 2019. "A multicriteria outranking approach for modeling corporate credit ratings: An application of the Electre Tri-nC method," Omega, Elsevier, vol. 82(C), pages 166-180.
    20. Balios, Dimitris & Thomadakis, Stavros & Tsipouri, Lena, 2016. "Credit rating model development: An ordered analysis based on accounting data," Research in International Business and Finance, Elsevier, vol. 38(C), pages 122-136.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balios, Dimitris & Thomadakis, Stavros & Tsipouri, Lena, 2016. "Credit rating model development: An ordered analysis based on accounting data," Research in International Business and Finance, Elsevier, vol. 38(C), pages 122-136.
    2. Sim, Jaehun & Kim, Chae-Soo, 2019. "The value of renewable energy research and development investments with default consideration," Renewable Energy, Elsevier, vol. 143(C), pages 530-539.
    3. Afik, Zvika & Arad, Ohad & Galil, Koresh, 2016. "Using Merton model for default prediction: An empirical assessment of selected alternatives," Journal of Empirical Finance, Elsevier, vol. 35(C), pages 43-67.
    4. Ali, Searat & Hussain, Nazim & Iqbal, Jamshed, 2021. "Corporate governance and the insolvency risk of financial institutions," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    5. Aggarwal, Nidhi & Singh, Manish K. & Thomas, Susan, 2023. "Do decreases in Distance-to-Default predict rating downgrades?," Economic Modelling, Elsevier, vol. 129(C).
    6. Charitou, Andreas & Dionysiou, Dionysia & Lambertides, Neophytos & Trigeorgis, Lenos, 2013. "Alternative bankruptcy prediction models using option-pricing theory," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2329-2341.
    7. Duc Hong Vo & Binh Ninh Vo Pham & Chi Minh Ho & Michael McAleer, 2019. "Corporate Financial Distress of Industry Level Listings in Vietnam," JRFM, MDPI, vol. 12(4), pages 1-17, September.
    8. Antonio Trujillo-Ponce & Reyes Samaniego-Medina & Clara Cardone-Riportella, 2014. "Examining what best explains corporate credit risk: accounting-based versus market-based models," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 15(2), pages 253-276, April.
    9. Doumpos, Michalis & Figueira, José Rui, 2019. "A multicriteria outranking approach for modeling corporate credit ratings: An application of the Electre Tri-nC method," Omega, Elsevier, vol. 82(C), pages 166-180.
    10. Demirovic, Amer & Tucker, Jon & Guermat, Cherif, 2015. "Accounting data and the credit spread: An empirical investigation," Research in International Business and Finance, Elsevier, vol. 34(C), pages 233-250.
    11. Andrikopoulos, Panagiotis & Khorasgani, Amir, 2018. "Predicting unlisted SMEs' default: Incorporating market information on accounting-based models for improved accuracy," The British Accounting Review, Elsevier, vol. 50(5), pages 559-573.
    12. repec:pab:wpbsad:12.07 is not listed on IDEAS
    13. Chen, An-Sing & Chu, Hsiang-Hui & Hung, Pi-Hsia & Cheng, Miao-Sih, 2020. "Financial risk and acquirers' stockholder wealth in mergers and acquisitions," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    14. Huang, Hsing-Hua & Lee, Han-Hsing, 2013. "Product market competition and credit risk," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 324-340.
    15. Andreou, Christoforos K. & Lambertides, Neophytos & Panayides, Photis M., 2021. "Distress risk anomaly and misvaluation," The British Accounting Review, Elsevier, vol. 53(5).
    16. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    17. Harada, Kimie & Ito, Takatoshi & Takahashi, Shuhei, 2013. "Is the Distance to Default a good measure in predicting bank failures? A case study of Japanese major banks," Japan and the World Economy, Elsevier, vol. 27(C), pages 70-82.
    18. Fantazzini, Dean, 2008. "Credit Risk Management," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 12(4), pages 84-137.
    19. Vo, D.H. & Pham, B.V.-N. & Pham, T.V.-T. & McAleer, M.J., 2019. "Corporate Financial Distress of Industry Level Listings in an Emerging Market," Econometric Institute Research Papers EI2019-15, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Zvika Afik & Ohad Arad & Koresh Galil, 2012. "Using Merton model: an empirical assessment of alternatives," Working Papers 1202, Ben-Gurion University of the Negev, Department of Economics.
    21. Zhang, Jinqing & He, Liang & An, Yunbi, 2020. "Measuring banks’ liquidity risk: An option-pricing approach," Journal of Banking & Finance, Elsevier, vol. 111(C).

    More about this item

    Keywords

    Credit ratings; Rating agencies; Black–Scholes–Merton model; Multi-criteria decision making;
    All these keywords.

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • G24 - Financial Economics - - Financial Institutions and Services - - - Investment Banking; Venture Capital; Brokerage
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:50:y:2015:i:c:p:599-607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.