IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v319y2024i3p943-966.html
   My bibliography  Save this article

A three-dimensional spatial resource-constrained project scheduling problem: Model and heuristic

Author

Listed:
  • Zhang, Jingwen
  • Li, Lubo
  • Demeulemeester, Erik
  • Zhang, Haohua

Abstract

For a class of complex engineering projects executed in limited construction sites, spatial resources with three dimensions usually become a bottleneck that hampers their smooth implementation. Serious time-space conflicts frequently occur when multiple activities are carried out in parallel during some time periods. We propose a new project scheduling problem with three-dimensional spatial resource constraints (3D-sRCPSP), and a four-dimensional time-space is adopted to build the model for our 3D-sRCPSP. Firstly, in order to express the impacts of constrained sites on scheduling activities, two types of spatial constraints are refined and modeled: non-overlapping among active subspaces and not exceeding the total space, and then an integer programming model for the 3D-sRCPSP is formalized. Secondly, a novel heuristic algorithm is developed to solve the 3D-sRCPSP, which is embedded with 36 priority rules (PRs) and 3 instructive space allocation strategies. Besides 25 PRs for the traditional RCPSP, 11 new forms of PRs are extracted based on the features of 3D spatial resources. Thirdly, extensive numerical experiments are implemented to validate our model and heuristics. The instances are obtained by configuring the specific parameters of 3D spatial resources for benchmarks from PSPLIB library. One distinctive finding is that some existing PRs that perform well in the traditional RCPSP do not act best in the 3D-sRCPSP. On the other hand, the optimal solutions of very small-scale instances can be obtained by Gourbi solver, but our customized heuristic algorithm is more effective than Gourbi for general instances with medium/large sizes. Overall, the designed heuristics can effectively eliminate time-space conflicts in the planning stage of a project. Finally, as extension studies, the decision tree model is constructed to adaptively select the best PRs for each instance according to the indicators of project instances. These results can help project managers schedule activities and allocate spatial resources more accurately when encountering narrow construction sites.

Suggested Citation

  • Zhang, Jingwen & Li, Lubo & Demeulemeester, Erik & Zhang, Haohua, 2024. "A three-dimensional spatial resource-constrained project scheduling problem: Model and heuristic," European Journal of Operational Research, Elsevier, vol. 319(3), pages 943-966.
  • Handle: RePEc:eee:ejores:v:319:y:2024:i:3:p:943-966
    DOI: 10.1016/j.ejor.2024.07.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724005575
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.07.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alberto Caprara & Fabio Furini & Enrico Malaguti, 2013. "Uncommon Dantzig-Wolfe Reformulation for the Temporal Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 25(3), pages 560-571, August.
    2. Guo, Weikang & Vanhoucke, Mario & Coelho, José, 2023. "A prediction model for ranking branch-and-bound procedures for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 579-595.
    3. Klein, Robert, 1999. "Project scheduling under time-varying resource constraints," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 14075, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Edward W. Davis & James H. Patterson, 1975. "A Comparison of Heuristic and Optimum Solutions in Resource-Constrained Project Scheduling," Management Science, INFORMS, vol. 21(8), pages 944-955, April.
    5. Klein, Robert, 2000. "Bidirectional planning: improving priority rule-based heuristics for scheduling resource-constrained projects," European Journal of Operational Research, Elsevier, vol. 127(3), pages 619-638, December.
    6. Byeongseop Kim & Yongkuk Jeong & Jong Gye Shin, 2020. "Spatial arrangement using deep reinforcement learning to minimise rearrangement in ship block stockyards," International Journal of Production Research, Taylor & Francis Journals, vol. 58(16), pages 5062-5076, July.
    7. Shicheng Hu & Zhaoze Zhang & Song Wang & Yonggui Kao & Takao Ito, 2019. "A project scheduling problem with spatial resource constraints and a corresponding guided local search algorithm," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(8), pages 1349-1361, August.
    8. Bischoff, Eberhard E. & Marriott, Michael D., 1990. "A comparative evaluation of heuristics for container loading," European Journal of Operational Research, Elsevier, vol. 44(2), pages 267-276, January.
    9. Chen, Zhi & Demeulemeester, Erik & Bai, Sijun & Guo, Yuntao, 2018. "Efficient priority rules for the stochastic resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 270(3), pages 957-967.
    10. Kolisch, Rainer, 1996. "Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation," European Journal of Operational Research, Elsevier, vol. 90(2), pages 320-333, April.
    11. Gzara, Fatma & Elhedhli, Samir & Yildiz, Burak C., 2020. "The Pallet Loading Problem: Three-dimensional bin packing with practical constraints," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1062-1074.
    12. Boctor, Fayer F., 1990. "Some efficient multi-heuristic procedures for resource-constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 49(1), pages 3-13, November.
    13. Lee, Jae Kyu & Lee, Kyoung Jun & Park, Hung Kook & Hong, June Seok & Lee, Jung Seung, 1997. "Developing scheduling systems for Daewoo Shipbuilding: DAS project," European Journal of Operational Research, Elsevier, vol. 97(2), pages 380-395, March.
    14. Kolisch, Rainer & Sprecher, Arno, 1996. "PSPLIB - a project scheduling problem library," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 396, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    15. Silvano Martello & David Pisinger & Daniele Vigo, 2000. "The Three-Dimensional Bin Packing Problem," Operations Research, INFORMS, vol. 48(2), pages 256-267, April.
    16. Martinovic, J. & Strasdat, N. & Valério de Carvalho, J. & Furini, F., 2023. "A combinatorial flow-based formulation for temporal bin packing problems," European Journal of Operational Research, Elsevier, vol. 307(2), pages 554-574.
    17. Liu, Ying & Zhou, Jing & Lim, Andrew & Hu, Qian, 2023. "A tree search heuristic for the resource constrained project scheduling problem with transfer times," European Journal of Operational Research, Elsevier, vol. 304(3), pages 939-951.
    18. Yan Ge & Aimin Wang, 2018. "Spatial scheduling strategy for irregular curved blocks based on the modified genetic ant colony algorithm (MGACA) in shipbuilding," International Journal of Production Research, Taylor & Francis Journals, vol. 56(9), pages 3099-3115, May.
    19. Vijaya Dixit & Priyanka Verma & Piyush Raj & Mayank Sharma, 2018. "Resource and time criticality based block spatial scheduling in a shipyard under uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 56(22), pages 6993-7007, November.
    20. Sándor P. Fekete & Jörg Schepers, 2004. "A General Framework for Bounds for Higher-Dimensional Orthogonal Packing Problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 60(2), pages 311-329, October.
    21. Dale F. Cooper, 1976. "Heuristics for Scheduling Resource-Constrained Projects: An Experimental Investigation," Management Science, INFORMS, vol. 22(11), pages 1186-1194, July.
    22. F. Parreño & R. Alvarez-Valdes & J. Oliveira & J. Tamarit, 2010. "A hybrid GRASP/VND algorithm for two- and three-dimensional bin packing," Annals of Operations Research, Springer, vol. 179(1), pages 203-220, September.
    23. Teodor Gabriel Crainic & Guido Perboli & Roberto Tadei, 2008. "Extreme Point-Based Heuristics for Three-Dimensional Bin Packing," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 368-384, August.
    24. van der Beek, T. & Souravlias, D. & van Essen, J.T. & Pruyn, J. & Aardal, K., 2024. "Hybrid differential evolution algorithm for the resource constrained project scheduling problem with a flexible project structure and consumption and production of resources," European Journal of Operational Research, Elsevier, vol. 313(1), pages 92-111.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kolisch, Rainer & Hartmann, Sonke, 2006. "Experimental investigation of heuristics for resource-constrained project scheduling: An update," European Journal of Operational Research, Elsevier, vol. 174(1), pages 23-37, October.
    2. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
    3. Hartmann, Sonke & Kolisch, Rainer, 2000. "Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 127(2), pages 394-407, December.
    4. Osman Hürol Türkakın & David Arditi & Ekrem Manisalı, 2021. "Comparison of Heuristic Priority Rules in the Solution of the Resource-Constrained Project Scheduling Problem," Sustainability, MDPI, vol. 13(17), pages 1-17, September.
    5. Bortfeldt, Andreas & Wäscher, Gerhard, 2013. "Constraints in container loading – A state-of-the-art review," European Journal of Operational Research, Elsevier, vol. 229(1), pages 1-20.
    6. Lova, Antonio & Maroto, Concepcion & Tormos, Pilar, 2000. "A multicriteria heuristic method to improve resource allocation in multiproject scheduling," European Journal of Operational Research, Elsevier, vol. 127(2), pages 408-424, December.
    7. Schirmer, Andreas, 1998. "Case-based reasoning and improved adaptive search for project scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 472, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    8. Browning, Tyson R. & Yassine, Ali A., 2010. "Resource-constrained multi-project scheduling: Priority rule performance revisited," International Journal of Production Economics, Elsevier, vol. 126(2), pages 212-228, August.
    9. Schirmer, Andreas & Riesenberg, Sven, 1997. "Parameterized heuristics for project scheduling: Biased random sampling methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 456, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    10. Drexl, Andreas & Kolisch, Rainer & Sprecher, Arno, 1995. "Neuere Entwicklungen in der computergestützten Projektplanung," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 379, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    11. Schirmer, Andreas & Riesenberg, Sven, 1998. "Class-based control schemes for parameterized project scheduling heuristics," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 471, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    12. Kolisch, Rainer, 1994. "Serial and parallel resource-constrained projekt scheduling methodes revisited: Theory and computation," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 344, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    13. Böttcher, Jan & Drexl, Andreas & Kolisch, Rainer & Salewski, Frank, 1996. "Project scheduling under partially renewable resource constraints," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 398, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    14. Kolisch, Rainer, 1994. "Efficient priority rules for the resource-constrained project scheduling problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 350, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    15. Buddhakulsomsiri, Jirachai & Kim, David S., 2007. "Priority rule-based heuristic for multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting," European Journal of Operational Research, Elsevier, vol. 178(2), pages 374-390, April.
    16. Krzysztof Pieńkosz, 2024. "Graph models for identifying robot-packable patterns of pallet loading," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(4), pages 141-155.
    17. Kolisch, Rainer & Hartmann, Sönke, 1998. "Heuristic algorithms for solving the resource-constrained project scheduling problem: Classification and computational analysis," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 469, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    18. Salewski, Frank & Schirmer, Andreas & Drexl, Andreas, 1996. "Project Scheduling under Resource and Mode Identity Constraints. Part I: Model, Complexity Status, and Methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 387, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    19. Klein, Robert, 2000. "Bidirectional planning: improving priority rule-based heuristics for scheduling resource-constrained projects," European Journal of Operational Research, Elsevier, vol. 127(3), pages 619-638, December.
    20. Kolisch, Rainer, 1996. "Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation," European Journal of Operational Research, Elsevier, vol. 90(2), pages 320-333, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:319:y:2024:i:3:p:943-966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.