IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v307y2023i2p554-574.html
   My bibliography  Save this article

A combinatorial flow-based formulation for temporal bin packing problems

Author

Listed:
  • Martinovic, J.
  • Strasdat, N.
  • Valério de Carvalho, J.
  • Furini, F.

Abstract

We consider two neighboring generalizations of the classical bin packing problem: the temporal bin packing problem (TBPP) and the temporal bin packing problem with fire-ups (TBPP-FU). In both cases, the task is to arrange a set of given jobs, characterized by a resource consumption and an activity window, on homogeneous servers of limited capacity. To keep operational costs but also energy consumption low, TBPP is concerned with minimizing the number of servers in use, whereas TBPP-FU additionally takes into account the switch-on processes required for their operation. Either way, challenging integer optimization problems are obtained, which can differ significantly from each other despite the seemingly only marginal variation of the problems. In the literature, a branch-and-price method enriched with many preprocessing steps (for TBPP) and compact formulations (for TBPP-FU), benefiting from numerous reduction methods, have emerged as, currently, the most promising solution methods. In this paper, we introduce, in a sense, a unified solution framework for both problems (and, in fact, a wide variety of further interval scheduling applications) based on graph theory. Any scientific contributions in this direction failed so far because of the exponential size of the associated networks. The approach we present in this article does not change the theoretical exponentiality itself, but it can make it controllable by clever construction of the resulting graphs. In particular, for the first time all classical benchmark instances (and even larger ones) for the two problems can be solved – in times that significantly improve those of the previous approaches.

Suggested Citation

  • Martinovic, J. & Strasdat, N. & Valério de Carvalho, J. & Furini, F., 2023. "A combinatorial flow-based formulation for temporal bin packing problems," European Journal of Operational Research, Elsevier, vol. 307(2), pages 554-574.
  • Handle: RePEc:eee:ejores:v:307:y:2023:i:2:p:554-574
    DOI: 10.1016/j.ejor.2022.10.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722007810
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.10.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alberto Caprara & Fabio Furini & Enrico Malaguti, 2013. "Uncommon Dantzig-Wolfe Reformulation for the Temporal Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 25(3), pages 560-571, August.
    2. Dell’Amico, Mauro & Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2019. "Mathematical models and decomposition methods for the multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 274(3), pages 886-899.
    3. P. C. Gilmore & R. E. Gomory, 1961. "A Linear Programming Approach to the Cutting-Stock Problem," Operations Research, INFORMS, vol. 9(6), pages 849-859, December.
    4. Hall, Nicholas G. & Magazine, Michael J., 1994. "Maximizing the value of a space mission," European Journal of Operational Research, Elsevier, vol. 78(2), pages 224-241, October.
    5. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    6. Clautiaux, F. & Detienne, B. & Guillot, G., 2021. "An iterative dynamic programming approach for the temporal knapsack problem," European Journal of Operational Research, Elsevier, vol. 293(2), pages 442-456.
    7. Ruslan Sadykov & François Vanderbeck & Artur Pessoa & Issam Tahiri & Eduardo Uchoa, 2019. "Primal Heuristics for Branch and Price: The Assets of Diving Methods," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 251-267, April.
    8. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    9. Antoon W.J. Kolen & Jan Karel Lenstra & Christos H. Papadimitriou & Frits C.R. Spieksma, 2007. "Interval scheduling: A survey," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(5), pages 530-543, August.
    10. Timo Gschwind & Stefan Irnich, 2017. "Stabilized column generation for the temporal knapsack problem using dual-optimal inequalities," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 541-556, March.
    11. Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2016. "Bin packing and cutting stock problems: Mathematical models and exact algorithms," European Journal of Operational Research, Elsevier, vol. 255(1), pages 1-20.
    12. Maxence Delorme & Manuel Iori, 2020. "Enhanced Pseudo-polynomial Formulations for Bin Packing and Cutting Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 101-119, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Jongyoon & Han, Jinil & Lee, Kyungsik, 2024. "Integer optimization models and algorithms for the multi-period non-shareable resource allocation problem," European Journal of Operational Research, Elsevier, vol. 317(1), pages 43-59.
    2. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    3. Mathijs Barkel & Maxence Delorme, 2023. "Arcflow Formulations and Constraint Generation Frameworks for the Two Bar Charts Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 475-494, March.
    4. Artur Pessoa & Ruslan Sadykov & Eduardo Uchoa, 2021. "Solving Bin Packing Problems Using VRPSolver Models," SN Operations Research Forum, Springer, vol. 2(2), pages 1-25, June.
    5. John Martinovic, 2022. "A note on the integrality gap of cutting and skiving stock instances," 4OR, Springer, vol. 20(1), pages 85-104, March.
    6. Pereira, Jordi & Ritt, Marcus, 2023. "Exact and heuristic methods for a workload allocation problem with chain precedence constraints," European Journal of Operational Research, Elsevier, vol. 309(1), pages 387-398.
    7. B. S. C. Campello & C. T. L. S. Ghidini & A. O. C. Ayres & W. A. Oliveira, 2022. "A residual recombination heuristic for one-dimensional cutting stock problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 194-220, April.
    8. Maxence Delorme & Manuel Iori, 2020. "Enhanced Pseudo-polynomial Formulations for Bin Packing and Cutting Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 101-119, January.
    9. John Martinovic & Markus Hähnel & Guntram Scheithauer & Waltenegus Dargie, 2022. "An introduction to stochastic bin packing-based server consolidation with conflicts," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 296-331, July.
    10. Katrin Heßler & Stefan Irnich & Tobias Kreiter & Ulrich Pferschy, 2020. "Lexicographic Bin-Packing Optimization for Loading Trucks in a Direct-Shipping System," Working Papers 2009, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    11. Timo Gschwind & Stefan Irnich, 2014. "Dual Inequalities for Stabilized Column Generation Revisited," Working Papers 1407, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 23 Jul 2014.
    12. Lijun Wei & Zhixing Luo, & Roberto Baldacci & Andrew Lim, 2020. "A New Branch-and-Price-and-Cut Algorithm for One-Dimensional Bin-Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 428-443, April.
    13. Irvin Lustig & Patricia Randall & Robert Randall, 2021. "Formulation Matters: Reciprocating Integer Programming for Birchbox Product Assortment," Interfaces, INFORMS, vol. 51(5), pages 347-360, September.
    14. Orlando Rivera Letelier & François Clautiaux & Ruslan Sadykov, 2022. "Bin Packing Problem with Time Lags," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2249-2270, July.
    15. Delorme, Maxence & Iori, Manuel & Mendes, Nilson F.M., 2021. "Solution methods for scheduling problems with sequence-dependent deterioration and maintenance events," European Journal of Operational Research, Elsevier, vol. 295(3), pages 823-837.
    16. Sebastian Kraul & Markus Seizinger & Jens O. Brunner, 2023. "Machine Learning–Supported Prediction of Dual Variables for the Cutting Stock Problem with an Application in Stabilized Column Generation," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 692-709, May.
    17. Jean-François Côté & Mohamed Haouari & Manuel Iori, 2021. "Combinatorial Benders Decomposition for the Two-Dimensional Bin Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 963-978, July.
    18. Timo Gschwind & Stefan Irnich, 2016. "Dual Inequalities for Stabilized Column Generation Revisited," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 175-194, February.
    19. Katrin Heßler & Stefan Irnich & Tobias Kreiter & Ulrich Pferschy, 2022. "Bin packing with lexicographic objectives for loading weight- and volume-constrained trucks in a direct-shipping system," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 1-43, June.
    20. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:307:y:2023:i:2:p:554-574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.