IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v58y2020i16p5062-5076.html
   My bibliography  Save this article

Spatial arrangement using deep reinforcement learning to minimise rearrangement in ship block stockyards

Author

Listed:
  • Byeongseop Kim
  • Yongkuk Jeong
  • Jong Gye Shin

Abstract

As the shipbuilding industry is an engineering-to-order industry, different types of products are manufactured according to customer requests, and each product goes through different processes and workshops. During the shipbuilding process, if the product is not able to go directly to the subsequent process due to physical constraints of workshop, it temporarily waits in a stockyard. Since the waiting process involves unpredictable circumstances, plans regarding time and space cannot be established in advance. Therefore, unnecessary movement often occurs when ship blocks enter or depart from the stockyard. In this study, a reinforcement learning approach was proposed to minimise rearrangement in such circumstances. For this purpose, an environment in which blocks are arranged and rearranged was defined. Rewards based on the simplified rules were logically defined, and simulation was performed for quantitative evaluation using the proposed reinforcement learning algorithm. This algorithm was verified using an example model derived from actual data from a shipyard. The method proposed in this study can be used not only to the arrangement problem of ship block stockyards but also to the various arrangement and allocation problems or logistics problems in the manufacturing industry.

Suggested Citation

  • Byeongseop Kim & Yongkuk Jeong & Jong Gye Shin, 2020. "Spatial arrangement using deep reinforcement learning to minimise rearrangement in ship block stockyards," International Journal of Production Research, Taylor & Francis Journals, vol. 58(16), pages 5062-5076, July.
  • Handle: RePEc:taf:tprsxx:v:58:y:2020:i:16:p:5062-5076
    DOI: 10.1080/00207543.2020.1748247
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2020.1748247
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2020.1748247?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Yimo & Chow, Andy H.F. & Ho, Chin Pang & Kuo, Yong-Hong & Wu, Qihao & Ying, Chengshuo, 2022. "Reinforcement learning for logistics and supply chain management: Methodologies, state of the art, and future opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 162(C).
    2. Cannas, Violetta Giada & Gosling, Jonathan, 2021. "A decade of engineering-to-order (2010–2020): Progress and emerging themes," International Journal of Production Economics, Elsevier, vol. 241(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:58:y:2020:i:16:p:5062-5076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.