IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v316y2024i2p639-650.html
   My bibliography  Save this article

A general computational framework and a hybrid algorithm for large-scale data envelopment analysis

Author

Listed:
  • Chu, Junfei
  • Rui, Yuting
  • Khezrimotlagh, Dariush
  • Zhu, Joe

Abstract

This paper develops a new algorithm to accelerate DEA computation for large-scale datasets. We first provide a general DEA computation framework that employs a simple small-size linear program (LP). This LP can obtain all the critical outcomes simultaneously for accelerating DEA computation in the literature. Based on the general computational framework, we propose a new algorithm (called hybrid algorithm) that uses a hybrid strategy of density-increasing mechanism and reference set selection. The hybrid algorithm continuously solves the simple small-size LP to either identify an extreme efficient DMU or directly obtain the efficiency of the DMU under evaluation. To ensure the LPs solved are always in a small size, the hybrid algorithm selects the data of only a small subsample of the identified extreme efficient DMUs into the LPs’ coefficient matrix each time when a DMU is evaluated. A new subsample selection technique is also suggested. The numerical experiment shows that the new technique can select subsample of extreme efficient DMUs more effectively compared with the previous subsample selection technique. Consequently, the hybrid algorithm solves only one or a minuscule number of small-size LPs to obtain each DMU’s efficiency. Therefore, the hybrid algorithm ensures that the size and number of LPs solved for each DMU are small. The computational experiment on large datasets shows that the hybrid algorithm performs more than an order of magnitude faster than the existing representative algorithms.

Suggested Citation

  • Chu, Junfei & Rui, Yuting & Khezrimotlagh, Dariush & Zhu, Joe, 2024. "A general computational framework and a hybrid algorithm for large-scale data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 316(2), pages 639-650.
  • Handle: RePEc:eee:ejores:v:316:y:2024:i:2:p:639-650
    DOI: 10.1016/j.ejor.2024.01.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724000493
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.01.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chu, Junfei & Wu, Jie & Chu, Chengbin & Zhang, Tinglong, 2020. "DEA-based fixed cost allocation in two-stage systems: Leader-follower and satisfaction degree bargaining game approaches," Omega, Elsevier, vol. 94(C).
    2. Dariush Khezrimotlagh, 2021. "Parallel Processing and Large-Scale Datasets in Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Joe Zhu & Vincent Charles (ed.), Data-Enabled Analytics, pages 159-174, Springer.
    3. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Richard Barr & Matthew Durchholz, 1997. "Parallel and hierarchical decomposition approaches for solving large-scale Data Envelopment Analysis models," Annals of Operations Research, Springer, vol. 73(0), pages 339-372, October.
    6. Wen-Chih Chen & Sheng-Yung Lai, 2017. "Determining radial efficiency with a large data set by solving small-size linear programs," Annals of Operations Research, Springer, vol. 250(1), pages 147-166, March.
    7. Wade D. Cook & Julie Harrison & Raha Imanirad & Paul Rouse & Joe Zhu, 2013. "Data Envelopment Analysis with Nonhomogeneous DMUs," Operations Research, INFORMS, vol. 61(3), pages 666-676, June.
    8. J. H. Dulá & R. V. Helgason & N. Venugopal, 1998. "An Algorithm for Identifying the Frame of a Pointed Finite Conical Hull," INFORMS Journal on Computing, INFORMS, vol. 10(3), pages 323-330, August.
    9. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    10. Ali, Agha Iqbal, 1993. "Streamlined computation for data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 64(1), pages 61-67, January.
    11. Kaffash, Sepideh & Azizi, Roza & Huang, Ying & Zhu, Joe, 2020. "A survey of data envelopment analysis applications in the insurance industry 1993–2018," European Journal of Operational Research, Elsevier, vol. 284(3), pages 801-813.
    12. Cook, Wade D. & Liang, Liang & Zhu, Joe, 2010. "Measuring performance of two-stage network structures by DEA: A review and future perspective," Omega, Elsevier, vol. 38(6), pages 423-430, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shengqing Chang & Jingjing Ding & Chenpeng Feng & Ruifeng Wang, 2024. "A Hybrid Parallel Processing Strategy for Large-Scale DEA Computation," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2325-2349, June.
    2. Zelenyuk, Valentin, 2020. "Aggregation of inputs and outputs prior to Data Envelopment Analysis under big data," European Journal of Operational Research, Elsevier, vol. 282(1), pages 172-187.
    3. Khezrimotlagh, Dariush & Zhu, Joe & Cook, Wade D. & Toloo, Mehdi, 2019. "Data envelopment analysis and big data," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1047-1054.
    4. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    5. Chu, Junfei & Zhu, Joe, 2021. "Production scale-based two-stage network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 294(1), pages 283-294.
    6. Kaffash, Sepideh & Azizi, Roza & Huang, Ying & Zhu, Joe, 2020. "A survey of data envelopment analysis applications in the insurance industry 1993–2018," European Journal of Operational Research, Elsevier, vol. 284(3), pages 801-813.
    7. Wu, Jie & Xu, Guangcheng & Zhu, Qingyuan & Zhang, Chaochao, 2021. "Two-stage DEA models with fairness concern: Modelling and computational aspects," Omega, Elsevier, vol. 105(C).
    8. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    9. Jianhui Xie & Xiaoxuan Zhu & Liang Liang, 2020. "A multiplicative method for estimating the potential gains from two-stage production system mergers," Annals of Operations Research, Springer, vol. 288(1), pages 475-493, May.
    10. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    11. Dai, Qianzhi & Li, Yongjun & Lei, Xiyang & Wu, Dengsheng, 2021. "A DEA-based incentive approach for allocating common revenues or fixed costs," European Journal of Operational Research, Elsevier, vol. 292(2), pages 675-686.
    12. Sanjeet Singh & Prabhat Ranjan, 2018. "Efficiency analysis of non-homogeneous parallel sub-unit systems for the performance measurement of higher education," Annals of Operations Research, Springer, vol. 269(1), pages 641-666, October.
    13. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    14. You, Yan Q. & Jie, Tao, 2016. "A study of the operation efficiency and cost performance indices of power-supply companies in China based on a dynamic network slacks-based measure model," Omega, Elsevier, vol. 60(C), pages 85-97.
    15. Wen-Chih Chen & Sheng-Yung Lai, 2017. "Determining radial efficiency with a large data set by solving small-size linear programs," Annals of Operations Research, Springer, vol. 250(1), pages 147-166, March.
    16. Feng Li & Han Wu & Qingyuan Zhu & Liang Liang & Gang Kou, 2021. "Data envelopment analysis cross efficiency evaluation with reciprocal behaviors," Annals of Operations Research, Springer, vol. 302(1), pages 173-210, July.
    17. Day‐Yang Liu & Hsin‐Hsin Yao & Wen‐Min Lu & Cheng‐Hsien Lin, 2020. "Impulse response function analysis of the impacts of land value‐added tax policy on government performance," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 41(6), pages 1020-1032, September.
    18. Khezrimotlagh, Dariush & Cook, Wade D. & Zhu, Joe, 2020. "A nonparametric framework to detect outliers in estimating production frontiers," European Journal of Operational Research, Elsevier, vol. 286(1), pages 375-388.
    19. J. H. Dulá, 2011. "An Algorithm for Data Envelopment Analysis," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 284-296, May.
    20. Tao Jie, 2020. "Parallel processing of the Build Hull algorithm to address the large-scale DEA problem," Annals of Operations Research, Springer, vol. 295(1), pages 453-481, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:316:y:2024:i:2:p:639-650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.