IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v314y2024i3p894-911.html
   My bibliography  Save this article

Integer programming models and polyhedral study for the geodesic classification problem on graphs

Author

Listed:
  • Araújo, Paulo H. M.
  • Campêlo, Manoel
  • Corrêa, Ricardo C.
  • Labbé, Martine

Abstract

We study a discrete version of the classical classification problem in Euclidean space, to be called the geodesic classification problem. It is defined on a graph, where some vertices are initially assigned a class and the remaining ones must be classified. This vertex partition into classes is grounded on the concept of geodesic convexity on graphs, as a replacement for Euclidean convexity in the multidimensional space. We propose two new integer programming models along with branch-and-bound algorithms to solve them. We also carry out a polyhedral study of the associated polyhedra, which produced families of facet-defining inequalities and separation algorithms. Finally, we run computational experiments to evaluate the computational efficiency and the classification accuracy of the proposed approaches by comparing them with classic solution methods for the Euclidean convexity classification problem.

Suggested Citation

  • Araújo, Paulo H. M. & Campêlo, Manoel & Corrêa, Ricardo C. & Labbé, Martine, 2024. "Integer programming models and polyhedral study for the geodesic classification problem on graphs," European Journal of Operational Research, Elsevier, vol. 314(3), pages 894-911.
  • Handle: RePEc:eee:ejores:v:314:y:2024:i:3:p:894-911
    DOI: 10.1016/j.ejor.2023.08.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723006586
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.08.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. FERREIRA, C. E. & MARTIN, A. & de SOUZA, C. C. & WEISMANTEL, R., 1996. "Formulations and valid inequalities for the node capacitated graph partitioning problem," LIDAM Reprints CORE 1236, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. M. Sánchez-García & M. Sobrón & B. Vitoriano, 1998. "On the set covering polytope:Facets with coefficients in {0, 1, 2, 3}," Annals of Operations Research, Springer, vol. 81(0), pages 343-356, June.
    3. Dimitris Bertsimas & Romy Shioda, 2007. "Classification and Regression via Integer Optimization," Operations Research, INFORMS, vol. 55(2), pages 252-271, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brandner, Hubertus & Lessmann, Stefan & Voß, Stefan, 2013. "A memetic approach to construct transductive discrete support vector machines," European Journal of Operational Research, Elsevier, vol. 230(3), pages 581-595.
    2. W. David Pisinger & Anders Bo Rasmussen & Rune Sandvik, 2007. "Solution of Large Quadratic Knapsack Problems Through Aggressive Reduction," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 280-290, May.
    3. Wei, Ningji & Walteros, Jose L., 2022. "Integer programming methods for solving binary interdiction games," European Journal of Operational Research, Elsevier, vol. 302(2), pages 456-469.
    4. John E. Mitchell, 2003. "Realignment in the National Football League: Did they do it right?," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(7), pages 683-701, October.
    5. Steffen Rebennack & Vitaliy Krasko, 2020. "Piecewise Linear Function Fitting via Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 507-530, April.
    6. Benati, Stefano & Puerto, Justo & Rodríguez-Chía, Antonio M., 2017. "Clustering data that are graph connected," European Journal of Operational Research, Elsevier, vol. 261(1), pages 43-53.
    7. Lingxun Kong & Christos T. Maravelias, 2020. "On the Derivation of Continuous Piecewise Linear Approximating Functions," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 531-546, July.
    8. Nguyen, T.D. & Welsch, R., 2010. "Outlier detection and least trimmed squares approximation using semi-definite programming," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3212-3226, December.
    9. Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
    10. Michael M. Sørensen, 2004. "b-Tree Facets for the Simple Graph Partitioning Polytope," Journal of Combinatorial Optimization, Springer, vol. 8(2), pages 151-170, June.
    11. Burak Kocuk & Hyemin Jeon & Santanu S. Dey & Jeff Linderoth & James Luedtke & Xu Andy Sun, 2016. "A Cycle-Based Formulation and Valid Inequalities for DC Power Transmission Problems with Switching," Operations Research, INFORMS, vol. 64(4), pages 922-938, August.
    12. Yunxiao Deng & Suvrajeet Sen, 2022. "Predictive stochastic programming," Computational Management Science, Springer, vol. 19(1), pages 65-98, January.
    13. Kraus, Mathias & Feuerriegel, Stefan & Oztekin, Asil, 2020. "Deep learning in business analytics and operations research: Models, applications and managerial implications," European Journal of Operational Research, Elsevier, vol. 281(3), pages 628-641.
    14. Laura Palagi, 2019. "Global optimization issues in deep network regression: an overview," Journal of Global Optimization, Springer, vol. 73(2), pages 239-277, February.
    15. C. Helmberg & F. Rendl & R. Weismantel, 2000. "A Semidefinite Programming Approach to the Quadratic Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 4(2), pages 197-215, June.
    16. J. Paul Brooks, 2011. "Support Vector Machines with the Ramp Loss and the Hard Margin Loss," Operations Research, INFORMS, vol. 59(2), pages 467-479, April.
    17. Anuj Mehrotra & Joseph Shantz & Michael A. Trick, 2005. "Determining newspaper marketing zones using contiguous clustering," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(1), pages 82-92, February.
    18. Young Woong Park & Yan Jiang & Diego Klabjan & Loren Williams, 2017. "Algorithms for Generalized Clusterwise Linear Regression," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 301-317, May.
    19. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    20. Laura Palagi, 2017. "Global Optimization issues in Supervised Learning. An overview," DIAG Technical Reports 2017-11, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:314:y:2024:i:3:p:894-911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.