IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v8y2004i2d10.1023_bjoco.0000031417.96218.26.html
   My bibliography  Save this article

b-Tree Facets for the Simple Graph Partitioning Polytope

Author

Listed:
  • Michael M. Sørensen

    (The Aarhus School of Business)

Abstract

The simple graph partitioning problem is to partition an edge-weighted graph into mutually disjoint subgraphs, each consisting of no more than b nodes, such that the sum of the weights of all edges in the subgraphs is maximal. In this paper we introduce a large class of facet defining inequalities for the simple graph partitioning polytopes $$\mathcal{P}$$ n (b), b ≥ 3, associated with the complete graph on n nodes. These inequalities are induced by a graph configuration which is built upon trees of cardinality b. We provide a closed-form theorem that states all necessary and sufficient conditions for the facet defining property of the inequalities.

Suggested Citation

  • Michael M. Sørensen, 2004. "b-Tree Facets for the Simple Graph Partitioning Polytope," Journal of Combinatorial Optimization, Springer, vol. 8(2), pages 151-170, June.
  • Handle: RePEc:spr:jcomop:v:8:y:2004:i:2:d:10.1023_b:joco.0000031417.96218.26
    DOI: 10.1023/B:JOCO.0000031417.96218.26
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/B:JOCO.0000031417.96218.26
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/B:JOCO.0000031417.96218.26?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. FERREIRA, C. E. & MARTIN, A. & de SOUZA, C. C. & WEISMANTEL, R., 1996. "Formulations and valid inequalities for the node capacitated graph partitioning problem," LIDAM Reprints CORE 1236, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. M. Deza & M. Grötschel & M. Laurent, 1992. "Clique-Web Facets for Multicut Polytopes," Mathematics of Operations Research, INFORMS, vol. 17(4), pages 981-1000, November.
    3. Macambira, Elder Magalhaes & de Souza, Cid Carvalho, 2000. "The edge-weighted clique problem: Valid inequalities, facets and polyhedral computations," European Journal of Operational Research, Elsevier, vol. 123(2), pages 346-371, June.
    4. Hunting, Marcel & Faigle, Ulrich & Kern, Walter, 2001. "A Lagrangian relaxation approach to the edge-weighted clique problem," European Journal of Operational Research, Elsevier, vol. 131(1), pages 119-131, May.
    5. FERREIRA, Carlos E. & MARTIN, Alexander & de SOUZA, Cid C. & WEISMANTEL, Robert, 1998. "The node capacitated graph partitioning problem: A computational study," LIDAM Reprints CORE 1335, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Park, Kyungchul & Lee, Kyungsik & Park, Sungsoo, 1996. "An extended formulation approach to the edge-weighted maximal clique problem," European Journal of Operational Research, Elsevier, vol. 95(3), pages 671-682, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sorensen, Michael M., 2004. "New facets and a branch-and-cut algorithm for the weighted clique problem," European Journal of Operational Research, Elsevier, vol. 154(1), pages 57-70, April.
    2. San Segundo, Pablo & Coniglio, Stefano & Furini, Fabio & Ljubić, Ivana, 2019. "A new branch-and-bound algorithm for the maximum edge-weighted clique problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 76-90.
    3. Lourenco, Lidia Lampreia & Pato, Margarida Vaz, 2007. "The effect of strengthened linear formulations on improving the lower bounds for the part families with precedence constraints problem," European Journal of Operational Research, Elsevier, vol. 183(1), pages 181-196, November.
    4. Seyedmohammadhossein Hosseinian & Dalila B. M. M. Fontes & Sergiy Butenko, 2020. "A Lagrangian Bound on the Clique Number and an Exact Algorithm for the Maximum Edge Weight Clique Problem," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 747-762, July.
    5. Seyedmohammadhossein Hosseinian & Dalila B. M. M. Fontes & Sergiy Butenko, 2018. "A nonconvex quadratic optimization approach to the maximum edge weight clique problem," Journal of Global Optimization, Springer, vol. 72(2), pages 219-240, October.
    6. Borgwardt, S. & Schmiedl, F., 2014. "Threshold-based preprocessing for approximating the weighted dense k-subgraph problem," European Journal of Operational Research, Elsevier, vol. 234(3), pages 631-640.
    7. W. David Pisinger & Anders Bo Rasmussen & Rune Sandvik, 2007. "Solution of Large Quadratic Knapsack Problems Through Aggressive Reduction," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 280-290, May.
    8. John E. Mitchell, 2003. "Realignment in the National Football League: Did they do it right?," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(7), pages 683-701, October.
    9. Alidaee, Bahram & Glover, Fred & Kochenberger, Gary & Wang, Haibo, 2007. "Solving the maximum edge weight clique problem via unconstrained quadratic programming," European Journal of Operational Research, Elsevier, vol. 181(2), pages 592-597, September.
    10. Anuj Mehrotra & Joseph Shantz & Michael A. Trick, 2005. "Determining newspaper marketing zones using contiguous clustering," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(1), pages 82-92, February.
    11. Carvalho, Filipa D. & Almeida, M. Teresa, 2011. "Upper bounds and heuristics for the 2-club problem," European Journal of Operational Research, Elsevier, vol. 210(3), pages 489-494, May.
    12. Hunting, Marcel & Faigle, Ulrich & Kern, Walter, 2001. "A Lagrangian relaxation approach to the edge-weighted clique problem," European Journal of Operational Research, Elsevier, vol. 131(1), pages 119-131, May.
    13. Albareda-Sambola, Maria & Marín, Alfredo & Rodríguez-Chía, Antonio M., 2019. "Reformulated acyclic partitioning for rail-rail containers transshipment," European Journal of Operational Research, Elsevier, vol. 277(1), pages 153-165.
    14. Macambira, Elder Magalhaes & de Souza, Cid Carvalho, 2000. "The edge-weighted clique problem: Valid inequalities, facets and polyhedral computations," European Journal of Operational Research, Elsevier, vol. 123(2), pages 346-371, June.
    15. Jamie Fairbrother & Adam N. Letchford & Keith Briggs, 2018. "A two-level graph partitioning problem arising in mobile wireless communications," Computational Optimization and Applications, Springer, vol. 69(3), pages 653-676, April.
    16. Martinhon, Carlos & Lucena, Abilio & Maculan, Nelson, 2004. "Stronger K-tree relaxations for the vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 158(1), pages 56-71, October.
    17. de Meijer, Frank, 2023. "Integrality and cutting planes in semidefinite programming approaches for combinatorial optimization," Other publications TiSEM b1f1088c-95fe-4b8a-9e15-c, Tilburg University, School of Economics and Management.
    18. Ricardo M. Lima & Ignacio E. Grossmann, 2017. "On the solution of nonconvex cardinality Boolean quadratic programming problems: a computational study," Computational Optimization and Applications, Springer, vol. 66(1), pages 1-37, January.
    19. Renata Sotirov, 2018. "Graph bisection revisited," Annals of Operations Research, Springer, vol. 265(1), pages 143-154, June.
    20. Abilio Lucena, 2005. "Non Delayed Relax-and-Cut Algorithms," Annals of Operations Research, Springer, vol. 140(1), pages 375-410, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:8:y:2004:i:2:d:10.1023_b:joco.0000031417.96218.26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.