IDEAS home Printed from https://ideas.repec.org/a/spr/jbecon/v86y2016i5d10.1007_s11573-015-0783-3.html
   My bibliography  Save this article

A GRASP heuristic for the hot strip mill scheduling problem under consideration of energy consumption

Author

Listed:
  • Karen Puttkammer

    (Technische Universität Braunschweig)

  • Matthias G. Wichmann

    (Technische Universität Braunschweig)

  • Thomas S. Spengler

    (Technische Universität Braunschweig)

Abstract

Hot strip mill rolling is an energy intensive production process in the steel industry. It converts steel slabs at high temperatures into steel strips. In this paper we address the related planning problem, i.e. the hot strip mill scheduling problem. The task is to determine the production sequence of production orders within a schedule. The involved energy consumption for heating individual slabs is explicitly considered in a new mixed integer problem formulation. The model is solved using a greedy randomized adaptive search procedure. In a numerical case study based on real world data the applicability and performance of the proposed heuristic is analyzed. The solution approach is able to find optimal solutions for small problem instances. Moreover, it solves industry size problem instances within reasonable time and outperforms the rule based planning approach prevalent in praxis.

Suggested Citation

  • Karen Puttkammer & Matthias G. Wichmann & Thomas S. Spengler, 2016. "A GRASP heuristic for the hot strip mill scheduling problem under consideration of energy consumption," Journal of Business Economics, Springer, vol. 86(5), pages 537-573, July.
  • Handle: RePEc:spr:jbecon:v:86:y:2016:i:5:d:10.1007_s11573-015-0783-3
    DOI: 10.1007/s11573-015-0783-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11573-015-0783-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11573-015-0783-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2000. "A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex," European Journal of Operational Research, Elsevier, vol. 124(2), pages 267-282, July.
    2. Lopez, Leo & Carter, Michael W. & Gendreau, Michel, 1998. "The hot strip mill production scheduling problem: A tabu search approach," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 317-335, April.
    3. Gupta, Skylab R. & Smith, Jeffrey S., 2006. "Algorithms for single machine total tardiness scheduling with sequence dependent setups," European Journal of Operational Research, Elsevier, vol. 175(2), pages 722-739, December.
    4. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2001. "A review of planning and scheduling systems and methods for integrated steel production," European Journal of Operational Research, Elsevier, vol. 133(1), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lulu Song & Ying Meng & Qingxin Guo & Xinchang Gong, 2023. "Improved Differential Evolution Algorithm for Slab Allocation and Hot-Rolling Scheduling Integration Problem," Mathematics, MDPI, vol. 11(9), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torres, Nelson & Greivel, Gus & Betz, Joshua & Moreno, Eduardo & Newman, Alexandra & Thomas, Brian, 2024. "Optimizing steel coil production schedules under continuous casting and hot rolling," European Journal of Operational Research, Elsevier, vol. 314(2), pages 496-508.
    2. Mujawar, Sachin & Huang, Simin & Nagi, Rakesh, 2012. "Scheduling to minimize stringer utilization for continuous annealing operations," Omega, Elsevier, vol. 40(4), pages 437-444.
    3. Tang, Lixin & Wang, Xianpeng, 2009. "Simultaneously scheduling multiple turns for steel color-coating production," European Journal of Operational Research, Elsevier, vol. 198(3), pages 715-725, November.
    4. Vo[ss], Stefan & Witt, Andreas, 2007. "Hybrid flow shop scheduling as a multi-mode multi-project scheduling problem with batching requirements: A real-world application," International Journal of Production Economics, Elsevier, vol. 105(2), pages 445-458, February.
    5. Su, Fuyong & Kong, Linglu & Wang, Hui & Wen, Zhi, 2021. "Modeling and application for rolling scheduling problem based on TSP," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    6. D de Ladurantaye & M Gendreau & J-Y Potvin, 2007. "Scheduling a hot rolling mill," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 288-300, March.
    7. Ferretti, Ivan & Zanoni, Simone & Zavanella, Lucio, 2006. "Production-inventory scheduling using Ant System metaheuristic," International Journal of Production Economics, Elsevier, vol. 104(2), pages 317-326, December.
    8. Lixin Tang & Ying Meng & Zhi-Long Chen & Jiyin Liu, 2016. "Coil Batching to Improve Productivity and Energy Utilization in Steel Production," Manufacturing & Service Operations Management, INFORMS, vol. 18(2), pages 262-279, May.
    9. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2001. "A review of planning and scheduling systems and methods for integrated steel production," European Journal of Operational Research, Elsevier, vol. 133(1), pages 1-20, August.
    10. Antonio Jiménez-Martín & Alfonso Mateos & Josefa Z. Hernández, 2021. "Aluminium Parts Casting Scheduling Based on Simulated Annealing," Mathematics, MDPI, vol. 9(7), pages 1-18, March.
    11. Bellabdaoui, A. & Teghem, J., 2006. "A mixed-integer linear programming model for the continuous casting planning," International Journal of Production Economics, Elsevier, vol. 104(2), pages 260-270, December.
    12. Casado, Silvia & Laguna, Manuel & Pacheco, Joaquín & Puche, Julio C., 2020. "Grouping products for the optimization of production processes: A case in the steel manufacturing industry," European Journal of Operational Research, Elsevier, vol. 286(1), pages 190-202.
    13. Lixin Tang & Gongshu Wang & Zhi-Long Chen, 2014. "Integrated Charge Batching and Casting Width Selection at Baosteel," Operations Research, INFORMS, vol. 62(4), pages 772-787, August.
    14. Xu, Jun & Wang, Jun-Qiang & Liu, Zhixin, 2022. "Parallel batch scheduling: Impact of increasing machine capacity," Omega, Elsevier, vol. 108(C).
    15. Xiaoyu Yu & Jingyi Qian & Yajing Zhang & Min Kong, 2023. "Supply Chain Scheduling Method for the Coordination of Agile Production and Port Delivery Operation," Mathematics, MDPI, vol. 11(15), pages 1-24, July.
    16. Wang, John & Yan, Ruiliang & Hollister, Kimberly & Zhu, Dan, 2008. "A historic review of management science research in China," Omega, Elsevier, vol. 36(6), pages 919-932, December.
    17. Singer, Marcos & Donoso, Patricio, 2008. "Empirical validation of an activity-based optimization system," International Journal of Production Economics, Elsevier, vol. 113(1), pages 335-345, May.
    18. Kara, Imdat & Bektas, Tolga, 2006. "Integer linear programming formulations of multiple salesman problems and its variations," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1449-1458, November.
    19. Zhang, Ruijun & Lu, Jie & Zhang, Guangquan, 2011. "A knowledge-based multi-role decision support system for ore blending cost optimization of blast furnaces," European Journal of Operational Research, Elsevier, vol. 215(1), pages 194-203, November.
    20. Liu, Ying & Dong, Haibo & Lohse, Niels & Petrovic, Sanja, 2016. "A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance," International Journal of Production Economics, Elsevier, vol. 179(C), pages 259-272.

    More about this item

    Keywords

    Hot strip mill scheduling; Energy-oriented scheduling; Steel production; GRASP heuristic;
    All these keywords.

    JEL classification:

    • L61 - Industrial Organization - - Industry Studies: Manufacturing - - - Metals and Metal Products; Cement; Glass; Ceramics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jbecon:v:86:y:2016:i:5:d:10.1007_s11573-015-0783-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.