IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v314y2024i1p66-78.html
   My bibliography  Save this article

Multi-attribute two-echelon location routing: Formulation and dynamic discretization discovery approach

Author

Listed:
  • Escobar-Vargas, David
  • Crainic, Teodor Gabriel

Abstract

We study the two-echelon location-routing system under tight synchronization constraints, in addition to several other interacting attributes. Prompted, in particular, by city-logistics applications, the system we address concerns a two-echelon distribution layout composed of a set of platform facilities and a set of intermediate satellite facilities to deliver freight from supply zones outside the city to customers within. The problem setting includes time-dependent multicommodity demand, time windows, lack of storage capacity at intermediate facilities, and synchronization at these facilities of the fleets operating on different echelons. The problem requires the selection of facilities at both levels, the allocation of suppliers to platforms and of customers to satellites, and the routing and scheduling of vehicles at each echelon, in order to deliver the freight from platforms to customers, through the satellites. The lack of storage capacity of the shared facilities, the satellites, requires tight scheduling of the vehicle routes and demand itineraries, i.e., departure times from the platforms and satellites, and the synchronization of vehicle routes at satellites for efficient transshipment operations. We introduce the problem setting, present a mixed-integer programming formulation, and a dynamic discretization discovery-based exact solution method for the problem. We perform thorough analyses to assess the impact of the problem attributes and requirements on the system behaviour and algorithm performance.

Suggested Citation

  • Escobar-Vargas, David & Crainic, Teodor Gabriel, 2024. "Multi-attribute two-echelon location routing: Formulation and dynamic discretization discovery approach," European Journal of Operational Research, Elsevier, vol. 314(1), pages 66-78.
  • Handle: RePEc:eee:ejores:v:314:y:2024:i:1:p:66-78
    DOI: 10.1016/j.ejor.2023.09.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723007476
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.09.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karlo Bala & Dejan Brcanov & Nebojša Gvozdenović, 2017. "Two-echelon location routing synchronized with production schedules and time windows," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(3), pages 525-543, September.
    2. Michael Schneider & Michael Drexl, 2017. "A survey of the standard location-routing problem," Annals of Operations Research, Springer, vol. 259(1), pages 389-414, December.
    3. Teodor Gabriel Crainic & Walid Klibi & Benoit Montreuil, 2023. "Hyperconnected city logistics: a conceptual framework," Chapters, in: Edoardo Marcucci & Valerio Gatta & Michela Le Pira (ed.), Handbook on City Logistics and Urban Freight, chapter 20, pages 398-421, Edward Elgar Publishing.
    4. Mervat Chouman & Teodor Gabriel Crainic, 2021. "Freight Railroad Service Network Design," Springer Books, in: Teodor Gabriel Crainic & Michel Gendreau & Bernard Gendron (ed.), Network Design with Applications to Transportation and Logistics, chapter 0, pages 383-426, Springer.
    5. Natashia Boland & Mike Hewitt & Luke Marshall & Martin Savelsbergh, 2017. "The Continuous-Time Service Network Design Problem," Operations Research, INFORMS, vol. 65(5), pages 1303-1321, October.
    6. Prodhon, Caroline & Prins, Christian, 2014. "A survey of recent research on location-routing problems," European Journal of Operational Research, Elsevier, vol. 238(1), pages 1-17.
    7. Nico Dellaert & Fardin Dashty Saridarq & Tom Van Woensel & Teodor Gabriel Crainic, 2019. "Branch-and-Price–Based Algorithms for the Two-Echelon Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 53(2), pages 463-479, March.
    8. Darvish, Maryam & Archetti, Claudia & Coelho, Leandro C. & Speranza, M. Grazia, 2019. "Flexible two-echelon location routing problem," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1124-1136.
    9. Teodor Gabriel Crainic & Mike Hewitt, 2021. "Service Network Design," Springer Books, in: Teodor Gabriel Crainic & Michel Gendreau & Bernard Gendron (ed.), Network Design with Applications to Transportation and Logistics, chapter 0, pages 347-382, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Vincent F. & Jodiawan, Panca & Hou, Ming-Lu & Gunawan, Aldy, 2021. "Design of a two-echelon freight distribution system in last-mile logistics considering covering locations and occasional drivers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    2. Hewitt, Mike & Lehuédé, Fabien, 2023. "New formulations for the Scheduled Service Network Design Problem," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 117-133.
    3. Satici, Ozgur & Dayarian, Iman, 2024. "Tactical and operational planning of express intra-city package services," Omega, Elsevier, vol. 122(C).
    4. Schwerdfeger, Stefan & Boysen, Nils, 2020. "Optimizing the changing locations of mobile parcel lockers in last-mile distribution," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1077-1094.
    5. Belieres, Simon & Hewitt, Mike, 2024. "Hedging against uncertainty in transportation network design through flexible scheduling," Omega, Elsevier, vol. 126(C).
    6. Crainic, Teodor Gabriel & Perboli, Guido & Rei, Walter & Rosano, Mariangela & Lerma, Veronica, 2024. "Capacity planning with uncertainty on contract fulfillment," European Journal of Operational Research, Elsevier, vol. 314(1), pages 152-175.
    7. Wang, Qingyi & Nie, Xiaofeng, 2023. "A location-inventory-routing model for distributing emergency supplies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    8. Gläser, Sina, 2022. "A waste collection problem with service type option," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1216-1230.
    9. Crainic, Teodor Gabriel & Gendron, Bernard & Akhavan Kazemzadeh, Mohammad Rahim, 2022. "A taxonomy of multilayer network design and a survey of transportation and telecommunication applications," European Journal of Operational Research, Elsevier, vol. 303(1), pages 1-13.
    10. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    11. Michiel A. J. uit het Broek & Albert H. Schrotenboer & Bolor Jargalsaikhan & Kees Jan Roodbergen & Leandro C. Coelho, 2021. "Asymmetric Multidepot Vehicle Routing Problems: Valid Inequalities and a Branch-and-Cut Algorithm," Operations Research, INFORMS, vol. 69(2), pages 380-409, March.
    12. Bilegan, Ioana C. & Crainic, Teodor Gabriel & Wang, Yunfei, 2022. "Scheduled service network design with revenue management considerations and an intermodal barge transportation illustration," European Journal of Operational Research, Elsevier, vol. 300(1), pages 164-177.
    13. Carrasco Heine, Oscar F. & Demleitner, Antonia & Matuschke, Jannik, 2023. "Bifactor approximation for location routing with vehicle and facility capacities," European Journal of Operational Research, Elsevier, vol. 304(2), pages 429-442.
    14. Arslan, Okan & Kumcu, Gül Çulhan & Kara, Bahar Yetiş & Laporte, Gilbert, 2021. "The location and location-routing problem for the refugee camp network design," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 201-220.
    15. Wolfinger, David & Gansterer, Margaretha & Doerner, Karl F. & Popper, Nikolas, 2023. "A Large Neighbourhood Search Metaheuristic for the Contagious Disease Testing Problem," European Journal of Operational Research, Elsevier, vol. 304(1), pages 169-182.
    16. Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2020. "Integrating first-mile pickup and last-mile delivery on shared vehicle routes for efficient urban e-commerce distribution," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 26-62.
    17. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2022. "Van-based robot hybrid pickup and delivery routing problem," European Journal of Operational Research, Elsevier, vol. 298(3), pages 894-914.
    18. Fischer, Vera & Pacheco Paneque, Meritxell & Legrain, Antoine & Bürgy, Reinhard, 2024. "A capacitated multi-vehicle covering tour problem on a road network and its application to waste collection," European Journal of Operational Research, Elsevier, vol. 315(1), pages 338-353.
    19. Zajac, Sandra & Huber, Sandra, 2021. "Objectives and methods in multi-objective routing problems: a survey and classification scheme," European Journal of Operational Research, Elsevier, vol. 290(1), pages 1-25.
    20. Janjevic, Milena & Winkenbach, Matthias & Merchán, Daniel, 2019. "Integrating collection-and-delivery points in the strategic design of urban last-mile e-commerce distribution networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 37-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:314:y:2024:i:1:p:66-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.