IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v172y2023icp117-133.html
   My bibliography  Save this article

New formulations for the Scheduled Service Network Design Problem

Author

Listed:
  • Hewitt, Mike
  • Lehuédé, Fabien

Abstract

We propose a new approach to formulating the Scheduled Service Network Design Problem (SSNDP) that involves modeling with enumerated consolidations of shipments routed on the physical network. This is in contrast to the classical approach of capturing the synchronization of vehicles and shipments needed for consolidation with a time-expanded network. The proposed formulation has both a stronger linear relaxation and is less symmetric. We present multiple speed-up techniques and with an extensive computational study illustrate that the consolidation-based formulation is much easier to solve with an off-the-shelf solver than the classical formulation based on a time-expanded network.

Suggested Citation

  • Hewitt, Mike & Lehuédé, Fabien, 2023. "New formulations for the Scheduled Service Network Design Problem," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 117-133.
  • Handle: RePEc:eee:transb:v:172:y:2023:i:c:p:117-133
    DOI: 10.1016/j.trb.2023.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261523000668
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2023.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Teodor Gabriel Crainic & Bernard Gendron, 2021. "Exact Methods for Fixed-Charge Network Design," Springer Books, in: Teodor Gabriel Crainic & Michel Gendreau & Bernard Gendron (ed.), Network Design with Applications to Transportation and Logistics, chapter 0, pages 29-89, Springer.
    2. Mervat Chouman & Teodor Gabriel Crainic, 2015. "Cutting-Plane Matheuristic for Service Network Design with Design-Balanced Requirements," Transportation Science, INFORMS, vol. 49(1), pages 99-113, February.
    3. Endong Zhu & Teodor Gabriel Crainic & Michel Gendreau, 2014. "Scheduled Service Network Design for Freight Rail Transportation," Operations Research, INFORMS, vol. 62(2), pages 383-400, April.
    4. Warren B. Powell & Yosef Sheffi, 1989. "OR Practice—Design and Implementation of an Interactive Optimization System for Network Design in the Motor Carrier Industry," Operations Research, INFORMS, vol. 37(1), pages 12-29, February.
    5. Mike Hewitt, 2019. "Enhanced Dynamic Discretization Discovery for the Continuous Time Load Plan Design Problem," Transportation Science, INFORMS, vol. 53(6), pages 1731-1750, November.
    6. Jardar Andersen & Marielle Christiansen & Teodor Gabriel Crainic & Roar Grønhaug, 2011. "Branch and Price for Service Network Design with Asset Management Constraints," Transportation Science, INFORMS, vol. 45(1), pages 33-49, February.
    7. Keely L. Croxton & Bernard Gendron & Thomas L. Magnanti, 2003. "A Comparison of Mixed-Integer Programming Models for Nonconvex Piecewise Linear Cost Minimization Problems," Management Science, INFORMS, vol. 49(9), pages 1268-1273, September.
    8. Antonio Frangioni & Bernard Gendron, 2021. "Piecewise Linear Cost Network Design," Springer Books, in: Teodor Gabriel Crainic & Michel Gendreau & Bernard Gendron (ed.), Network Design with Applications to Transportation and Logistics, chapter 0, pages 167-185, Springer.
    9. Ilke Bakir & Alan Erera & Martin Savelsbergh, 2021. "Motor Carrier Service Network Design," Springer Books, in: Teodor Gabriel Crainic & Michel Gendreau & Bernard Gendron (ed.), Network Design with Applications to Transportation and Logistics, chapter 0, pages 427-467, Springer.
    10. Mervat Chouman & Teodor Gabriel Crainic & Bernard Gendron, 2017. "Commodity Representations and Cut-Set-Based Inequalities for Multicommodity Capacitated Fixed-Charge Network Design," Transportation Science, INFORMS, vol. 51(2), pages 650-667, May.
    11. Ahmad I. Jarrah & Ellis Johnson & Lucas C. Neubert, 2009. "Large-Scale, Less-than-Truckload Service Network Design," Operations Research, INFORMS, vol. 57(3), pages 609-625, June.
    12. Teodor Gabriel Crainic & Mike Hewitt, 2021. "Service Network Design," Springer Books, in: Teodor Gabriel Crainic & Michel Gendreau & Bernard Gendron (ed.), Network Design with Applications to Transportation and Logistics, chapter 0, pages 347-382, Springer.
    13. Alan Erera & Michael Hewitt & Martin Savelsbergh & Yang Zhang, 2013. "Improved Load Plan Design Through Integer Programming Based Local Search," Transportation Science, INFORMS, vol. 47(3), pages 412-427, August.
    14. Sophie D. Lapierre & Angel B. Ruiz & Patrick Soriano, 2004. "Designing Distribution Networks: Formulations and Solution Heuristic," Transportation Science, INFORMS, vol. 38(2), pages 174-187, May.
    15. John W. Braklow & William W. Graham & Stephen M. Hassler & Ken E. Peck & Warren B. Powell, 1992. "Interactive Optimization Improves Service and Performance for Yellow Freight System," Interfaces, INFORMS, vol. 22(1), pages 147-172, February.
    16. Teodor Gabriel Crainic & Michel Gendreau, 2021. "Heuristics and Metaheuristics for Fixed-Charge Network Design," Springer Books, in: Teodor Gabriel Crainic & Michel Gendreau & Bernard Gendron (ed.), Network Design with Applications to Transportation and Logistics, chapter 0, pages 91-138, Springer.
    17. Hewitt, Mike & Crainic, Teodor Gabriel & Nowak, Maciek & Rei, Walter, 2019. "Scheduled service network design with resource acquisition and management under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 324-343.
    18. Natashia Boland & Mike Hewitt & Luke Marshall & Martin Savelsbergh, 2017. "The Continuous-Time Service Network Design Problem," Operations Research, INFORMS, vol. 65(5), pages 1303-1321, October.
    19. Teypaz, Nicolas & Schrenk, Susann & Cung, Van-Dat, 2010. "A decomposition scheme for large-scale Service Network Design with asset management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(1), pages 156-170, January.
    20. Natashia Boland & Mike Hewitt & Luke Marshall & Martin Savelsbergh, 2019. "The price of discretizing time: a study in service network design," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 195-216, June.
    21. Teodor Gabriel Crainic & Mike Hewitt & Michel Toulouse & Duc Minh Vu, 2016. "Service Network Design with Resource Constraints," Transportation Science, INFORMS, vol. 50(4), pages 1380-1393, November.
    22. Mervat Chouman & Teodor Gabriel Crainic, 2021. "Freight Railroad Service Network Design," Springer Books, in: Teodor Gabriel Crainic & Michel Gendreau & Bernard Gendron (ed.), Network Design with Applications to Transportation and Logistics, chapter 0, pages 383-426, Springer.
    23. Crainic, Teodor Gabriel, 2000. "Service network design in freight transportation," European Journal of Operational Research, Elsevier, vol. 122(2), pages 272-288, April.
    24. Scherr, Yannick Oskar & Neumann Saavedra, Bruno Albert & Hewitt, Mike & Mattfeld, Dirk Christian, 2019. "Service network design with mixed autonomous fleets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 40-55.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Greening, Lacy M. & Dahan, Mathieu & Erera, Alan L., 2023. "Lead-Time-Constrained Middle-Mile Consolidation Network Design with Fixed Origins and Destinations," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    2. Satici, Ozgur & Dayarian, Iman, 2024. "Tactical and operational planning of express intra-city package services," Omega, Elsevier, vol. 122(C).
    3. Crainic, Teodor Gabriel & Gendron, Bernard & Akhavan Kazemzadeh, Mohammad Rahim, 2022. "A taxonomy of multilayer network design and a survey of transportation and telecommunication applications," European Journal of Operational Research, Elsevier, vol. 303(1), pages 1-13.
    4. Zhang, X. & Liu, X., 2022. "A two-stage robust model for express service network design with surging demand," European Journal of Operational Research, Elsevier, vol. 299(1), pages 154-167.
    5. Belieres, Simon & Hewitt, Mike, 2024. "Hedging against uncertainty in transportation network design through flexible scheduling," Omega, Elsevier, vol. 126(C).
    6. Liu, Chuanju & Lin, Shaochong & Shen, Zuo-Jun Max & Zhang, Junlong, 2023. "Stochastic service network design: The value of fixed routes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    7. Eskandarzadeh, Saman & Fahimnia, Behnam, 2024. "Containerised parcel delivery: Modelling and performance evaluation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    8. Liu, Chuanju & Zhang, Junlong & Lin, Shaochong & Shen, Zuo-Jun Max, 2023. "Service network design with consistent multiple trips," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    9. Xudong Diao & Ai Gao & Xin Jin & Hui Chen, 2022. "A Layer-Based Relaxation Approach for Service Network Design," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    10. Ahmad Baubaid & Natashia Boland & Martin Savelsbergh, 2021. "The Value of Limited Flexibility in Service Network Designs," Transportation Science, INFORMS, vol. 55(1), pages 52-74, 1-2.
    11. Al Hajj Hassan, Lama & Hewitt, Mike & Mahmassani, Hani S., 2022. "Daily load planning under different autonomous truck deployment scenarios," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    12. Teodor Gabriel Crainic & Mike Hewitt & Michel Toulouse & Duc Minh Vu, 2018. "Scheduled service network design with resource acquisition and management," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 277-309, September.
    13. Wang, Zujian & Qi, Mingyao, 2019. "Service network design considering multiple types of services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 1-14.
    14. Li, Xiangyong & Ding, Yi & Pan, Kai & Jiang, Dapei & Aneja, Y.P., 2020. "Single-path service network design problem with resource constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    15. Hewitt, Mike & Crainic, Teodor Gabriel & Nowak, Maciek & Rei, Walter, 2019. "Scheduled service network design with resource acquisition and management under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 324-343.
    16. Scherr, Yannick Oskar & Hewitt, Mike & Neumann Saavedra, Bruno Albert & Mattfeld, Dirk Christian, 2020. "Dynamic discretization discovery for the service network design problem with mixed autonomous fleets," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 164-195.
    17. Mike Hewitt, 2019. "Enhanced Dynamic Discretization Discovery for the Continuous Time Load Plan Design Problem," Transportation Science, INFORMS, vol. 53(6), pages 1731-1750, November.
    18. Natashia Boland & Mike Hewitt & Luke Marshall & Martin Savelsbergh, 2017. "The Continuous-Time Service Network Design Problem," Operations Research, INFORMS, vol. 65(5), pages 1303-1321, October.
    19. Michael F. Gorman & John-Paul Clarke & Amir Hossein Gharehgozli & Michael Hewitt & René de Koster & Debjit Roy, 2014. "State of the Practice: A Review of the Application of OR/MS in Freight Transportation," Interfaces, INFORMS, vol. 44(6), pages 535-554, December.
    20. Naoto Katayama, 2020. "MIP neighborhood search heuristics for a service network design problem with design-balanced requirements," Journal of Heuristics, Springer, vol. 26(4), pages 475-502, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:172:y:2023:i:c:p:117-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.