IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v304y2023i3p865-886.html
   My bibliography  Save this article

Two-echelon vehicle routing problems: A literature review

Author

Listed:
  • Sluijk, Natasja
  • Florio, Alexandre M.
  • Kinable, Joris
  • Dellaert, Nico
  • Van Woensel, Tom

Abstract

In the two-echelon vehicle routing problem (2E-VRP), the distribution network is split into two echelons. Different vehicles are operated on the first and second echelon to maintain economies of scale and adhere to any vehicle restrictions that may be present in either echelon. Intermediate facilities are located at the borders of the echelons to facilitate the consolidation and transshipment of goods between echelons. Examples of two-echelon distribution systems include express delivery, grocery and hypermarket products distribution, multi-modal freight transportation, city logistics, and e-commerce and home delivery services. In recent years, the body of literature on the 2E-VRP has expanded significantly. Over 60 research papers have appeared in the scientific literature so far, which underlines both the academic and practical relevance of 2E-VRPs. In this review, we structure and revise all literature on the 2E-VRP. Mathematical formulations, exact and heuristic solution methods, and benchmark datasets used to test and evaluate new algorithms are reviewed and discussed. This survey concludes with a selected list of open research areas on 2E-VRPs.

Suggested Citation

  • Sluijk, Natasja & Florio, Alexandre M. & Kinable, Joris & Dellaert, Nico & Van Woensel, Tom, 2023. "Two-echelon vehicle routing problems: A literature review," European Journal of Operational Research, Elsevier, vol. 304(3), pages 865-886.
  • Handle: RePEc:eee:ejores:v:304:y:2023:i:3:p:865-886
    DOI: 10.1016/j.ejor.2022.02.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722001278
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.02.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grangier, Philippe & Gendreau, Michel & Lehuédé, Fabien & Rousseau, Louis-Martin, 2016. "An adaptive large neighborhood search for the two-echelon multiple-trip vehicle routing problem with satellite synchronization," European Journal of Operational Research, Elsevier, vol. 254(1), pages 80-91.
    2. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2020. "Two-echelon urban deliveries using autonomous vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    3. Roberto Baldacci & Aristide Mingozzi & Roberto Roberti, 2011. "New Route Relaxation and Pricing Strategies for the Vehicle Routing Problem," Operations Research, INFORMS, vol. 59(5), pages 1269-1283, October.
    4. Mads Jepsen & Simon Spoorendonk & Stefan Ropke, 2013. "A Branch-and-Cut Algorithm for the Symmetric Two-Echelon Capacitated Vehicle Routing Problem," Transportation Science, INFORMS, vol. 47(1), pages 23-37, February.
    5. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    6. J. M. Belenguer & M. C. Martinez & E. Mota, 2000. "A Lower Bound for the Split Delivery Vehicle Routing Problem," Operations Research, INFORMS, vol. 48(5), pages 801-810, October.
    7. G. Guastaroba & M. G. Speranza & D. Vigo, 2016. "Intermediate Facilities in Freight Transportation Planning: A Survey," Transportation Science, INFORMS, vol. 50(3), pages 763-789, August.
    8. Yu, Vincent F. & Jodiawan, Panca & Hou, Ming-Lu & Gunawan, Aldy, 2021. "Design of a two-echelon freight distribution system in last-mile logistics considering covering locations and occasional drivers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    9. Arjun Paul & Ravi Shankar Kumar & Chayanika Rout & Adrijit Goswami, 2021. "A bi-objective two-echelon pollution routing problem with simultaneous pickup and delivery under multiple time windows constraint," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 962-993, December.
    10. Hatem Ben Amor & Jacques Desrosiers & José Manuel Valério de Carvalho, 2006. "Dual-Optimal Inequalities for Stabilized Column Generation," Operations Research, INFORMS, vol. 54(3), pages 454-463, June.
    11. Li, Hongqi & Liu, Yinying & Jian, Xiaorong & Lu, Yingrong, 2018. "The two-echelon distribution system considering the real-time transshipment capacity varying," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 239-260.
    12. Zhou, Lin & Baldacci, Roberto & Vigo, Daniele & Wang, Xu, 2018. "A Multi-Depot Two-Echelon Vehicle Routing Problem with Delivery Options Arising in the Last Mile Distribution," European Journal of Operational Research, Elsevier, vol. 265(2), pages 765-778.
    13. Ran Liu & Yangyi Tao & Qiaoyu Hu & Xiaolei Xie, 2017. "Simulation-based optimisation approach for the stochastic two-echelon logistics problem," International Journal of Production Research, Taylor & Francis Journals, vol. 55(1), pages 187-201, January.
    14. Roberto Baldacci & Aristide Mingozzi & Roberto Roberti & Roberto Wolfler Calvo, 2013. "An Exact Algorithm for the Two-Echelon Capacitated Vehicle Routing Problem," Operations Research, INFORMS, vol. 61(2), pages 298-314, April.
    15. Teodor Gabriel Crainic & Nicoletta Ricciardi & Giovanni Storchi, 2009. "Models for Evaluating and Planning City Logistics Systems," Transportation Science, INFORMS, vol. 43(4), pages 432-454, November.
    16. Zhang, Dali & Li, Dong & Sun, Hailin & Hou, Liwen, 2021. "A vehicle routing problem with distribution uncertainty in deadlines," European Journal of Operational Research, Elsevier, vol. 292(1), pages 311-326.
    17. Archetti, Claudia & Bianchessi, Nicola & Speranza, M. Grazia, 2014. "Branch-and-cut algorithms for the split delivery vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 238(3), pages 685-698.
    18. Parisa Dolati Neghabadi & Karine Evrard Samuel & Marie-Laure Espinouse, 2019. "Systematic literature review on city logistics: overview, classification and analysis," International Journal of Production Research, Taylor & Francis Journals, vol. 57(3), pages 865-887, February.
    19. Ann-Kathrin Rothenbächer & Michael Drexl & Stefan Irnich, 2018. "Branch-and-Price-and-Cut for the Truck-and-Trailer Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 52(5), pages 1174-1190, October.
    20. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    21. Teodor Gabriel Crainic & Fausto Errico & Walter Rei & Nicoletta Ricciardi, 2016. "Modeling Demand Uncertainty in Two-Tier City Logistics Tactical Planning," Transportation Science, INFORMS, vol. 50(2), pages 559-578, May.
    22. Jacobsen, S. K. & Madsen, O. B. G., 1980. "A comparative study of heuristics for a two-level routing-location problem," European Journal of Operational Research, Elsevier, vol. 5(6), pages 378-387, December.
    23. Li, Hongqi & Wang, Haotian & Chen, Jun & Bai, Ming, 2021. "Two-echelon vehicle routing problem with satellite bi-synchronization," European Journal of Operational Research, Elsevier, vol. 288(3), pages 775-793.
    24. Anderluh, Alexandra & Nolz, Pamela C. & Hemmelmayr, Vera C. & Crainic, Teodor Gabriel, 2021. "Multi-objective optimization of a two-echelon vehicle routing problem with vehicle synchronization and ‘grey zone’ customers arising in urban logistics," European Journal of Operational Research, Elsevier, vol. 289(3), pages 940-958.
    25. Li, Hongqi & Chen, Jun & Wang, Feilong & Bai, Ming, 2021. "Ground-vehicle and unmanned-aerial-vehicle routing problems from two-echelon scheme perspective: A review," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1078-1095.
    26. Kangzhou Wang & Shulin Lan & Yingxue Zhao, 2017. "A genetic-algorithm-based approach to the two-echelon capacitated vehicle routing problem with stochastic demands in logistics service," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1409-1421, November.
    27. Liu, Tian & Luo, Zhixing & Qin, Hu & Lim, Andrew, 2018. "A branch-and-cut algorithm for the two-echelon capacitated vehicle routing problem with grouping constraints," European Journal of Operational Research, Elsevier, vol. 266(2), pages 487-497.
    28. Li, Hongqi & Zhang, Lu & Lv, Tan & Chang, Xinyu, 2016. "The two-echelon time-constrained vehicle routing problem in linehaul-delivery systems," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 169-188.
    29. Ziqi Wang & Peihan Wen, 2020. "Optimization of a Low-Carbon Two-Echelon Heterogeneous-Fleet Vehicle Routing for Cold Chain Logistics under Mixed Time Window," Sustainability, MDPI, vol. 12(5), pages 1-22, March.
    30. Nico Dellaert & Fardin Dashty Saridarq & Tom Van Woensel & Teodor Gabriel Crainic, 2019. "Branch-and-Price–Based Algorithms for the Two-Echelon Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 53(2), pages 463-479, March.
    31. Zheng-yang Zeng & Wei-sheng Xu & Zhi-yu Xu & Wei-hui Shao, 2014. "A Hybrid GRASP+VND Heuristic for the Two-Echelon Vehicle Routing Problem Arising in City Logistics," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-11, April.
    32. Jie, Wanchen & Yang, Jun & Zhang, Min & Huang, Yongxi, 2019. "The two-echelon capacitated electric vehicle routing problem with battery swapping stations: Formulation and efficient methodology," European Journal of Operational Research, Elsevier, vol. 272(3), pages 879-904.
    33. Darvish, Maryam & Archetti, Claudia & Coelho, Leandro C. & Speranza, M. Grazia, 2019. "Flexible two-echelon location routing problem," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1124-1136.
    34. Nguyen, Viet-Phuong & Prins, Christian & Prodhon, Caroline, 2012. "Solving the two-echelon location routing problem by a GRASP reinforced by a learning process and path relinking," European Journal of Operational Research, Elsevier, vol. 216(1), pages 113-126.
    35. Liang Song & Hao Gu & Hejiao Huang, 2017. "A lower bound for the adaptive two-echelon capacitated vehicle routing problem," Journal of Combinatorial Optimization, Springer, vol. 33(4), pages 1145-1167, May.
    36. Schenekemberg, Cleder M. & Scarpin, Cassius T. & Pécora, José E. & Guimarães, Thiago A. & Coelho, Leandro C., 2021. "The two-echelon production-routing problem," European Journal of Operational Research, Elsevier, vol. 288(2), pages 436-449.
    37. Fernando Afonso Santos & Geraldo Robson Mateus & Alexandre Salles da Cunha, 2015. "A Branch-and-Cut-and-Price Algorithm for the Two-Echelon Capacitated Vehicle Routing Problem," Transportation Science, INFORMS, vol. 49(2), pages 355-368, May.
    38. Guido Perboli & Roberto Tadei & Daniele Vigo, 2011. "The Two-Echelon Capacitated Vehicle Routing Problem: Models and Math-Based Heuristics," Transportation Science, INFORMS, vol. 45(3), pages 364-380, August.
    39. Lurkin, Virginie & Hambuckers, Julien & van Woensel, Tom, 2021. "Urban low emissions zones: A behavioral operations management perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 222-240.
    40. Martin Savelsbergh & Tom Van Woensel, 2016. "50th Anniversary Invited Article—City Logistics: Challenges and Opportunities," Transportation Science, INFORMS, vol. 50(2), pages 579-590, May.
    41. Mühlbauer, Ferdinand & Fontaine, Pirmin, 2021. "A parallelised large neighbourhood search heuristic for the asymmetric two-echelon vehicle routing problem with swap containers for cargo-bicycles," European Journal of Operational Research, Elsevier, vol. 289(2), pages 742-757.
    42. Alexandra Anderluh & Vera C. Hemmelmayr & Pamela C. Nolz, 2017. "Synchronizing vans and cargo bikes in a city distribution network," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 345-376, June.
    43. Surendra Reddy Kancharla & Gitakrishnan Ramadurai, 2019. "Multi-depot Two-Echelon Fuel Minimizing Routing Problem with Heterogeneous Fleets: Model and Heuristic," Networks and Spatial Economics, Springer, vol. 19(3), pages 969-1005, September.
    44. Soysal, Mehmet & Bloemhof-Ruwaard, Jacqueline M. & Bektaş, Tolga, 2015. "The time-dependent two-echelon capacitated vehicle routing problem with environmental considerations," International Journal of Production Economics, Elsevier, vol. 164(C), pages 366-378.
    45. Jesus Gonzalez-Feliu & Guido Perboli & Roberto Tadei & Daniele Vigo, 2008. "The two-echelon capacitated vehicle routing problem," Working Papers halshs-00879447, HAL.
    46. Huang, Yixiao & Savelsbergh, Martin & Zhao, Lei, 2018. "Designing logistics systems for home delivery in densely populated urban areas," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 95-125.
    47. Parisa Dolati Neghabadi & Karine Evrard Samuel & Marie-Laure Espinouse, 2019. "Systematic literature review on city logistics: overview, classification and analysis," Post-Print hal-01983716, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hisatoshi Naganawa & Enna Hirata & Nailah Firdausiyah & Russell G. Thompson, 2024. "Logistics Hub and Route Optimization in the Physical Internet Paradigm," Logistics, MDPI, vol. 8(2), pages 1-18, April.
    2. Peng, Xiaoshuai & Zhang, Lele & Thompson, Russell G. & Wang, Kangzhou, 2023. "A three-phase heuristic for last-mile delivery with spatial-temporal consolidation and delivery options," International Journal of Production Economics, Elsevier, vol. 266(C).
    3. Zhou, Hang & Qin, Hu & Cheng, Chun & Rousseau, Louis-Martin, 2023. "An exact algorithm for the two-echelon vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 124-150.
    4. Milovan Kovač & Snežana Tadić & Mladen Krstić & Miloš Veljović, 2023. "A Methodology for Planning City Logistics Concepts Based on City-Dry Port Micro-Consolidation Centres," Mathematics, MDPI, vol. 11(15), pages 1-21, July.
    5. Reed, Sara & Campbell, Ann Melissa & Thomas, Barrett W., 2024. "Does parking matter? The impact of parking time on last-mile delivery optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    6. Le Colleter, Théo & Dumez, Dorian & Lehuédé, Fabien & Péton, Olivier, 2023. "Small and large neighborhood search for the park-and-loop routing problem with parking selection," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1233-1248.
    7. Muriel, Juan E. & Zhang, Lele & Fransoo, Jan C. & Villegas, Juan G., 2024. "A reinforcement learning framework for improving parking decisions in last-mile delivery," Other publications TiSEM b3811dad-50fa-486b-8255-3, Tilburg University, School of Economics and Management.
    8. Mo, Pengli & Yao, Yu & D’Ariano, Andrea & Liu, Zhiyuan, 2023. "The vehicle routing problem with underground logistics: Formulation and algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    9. Yuxin Liu & Zihang Qin & Jin Liu, 2023. "An Improved Genetic Algorithm for the Granularity-Based Split Vehicle Routing Problem with Simultaneous Delivery and Pickup," Mathematics, MDPI, vol. 11(15), pages 1-15, July.
    10. Vincent F. Yu & Panca Jodiawan & Shih-Wei Lin & Winy Fara Nadira & Anna Maria Sri Asih & Le Nguyen Hoang Vinh, 2024. "Using Simulated Annealing to Solve the Multi-Depot Waste Collection Vehicle Routing Problem with Time Window and Self-Delivery Option," Mathematics, MDPI, vol. 12(3), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Hongqi & Wang, Haotian & Chen, Jun & Bai, Ming, 2021. "Two-echelon vehicle routing problem with satellite bi-synchronization," European Journal of Operational Research, Elsevier, vol. 288(3), pages 775-793.
    2. Huang, Yixiao & Savelsbergh, Martin & Zhao, Lei, 2018. "Designing logistics systems for home delivery in densely populated urban areas," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 95-125.
    3. Mühlbauer, Ferdinand & Fontaine, Pirmin, 2021. "A parallelised large neighbourhood search heuristic for the asymmetric two-echelon vehicle routing problem with swap containers for cargo-bicycles," European Journal of Operational Research, Elsevier, vol. 289(2), pages 742-757.
    4. Li, Hongqi & Wang, Haotian & Chen, Jun & Bai, Ming, 2020. "Two-echelon vehicle routing problem with time windows and mobile satellites," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 179-201.
    5. Jie, Wanchen & Yang, Jun & Zhang, Min & Huang, Yongxi, 2019. "The two-echelon capacitated electric vehicle routing problem with battery swapping stations: Formulation and efficient methodology," European Journal of Operational Research, Elsevier, vol. 272(3), pages 879-904.
    6. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2022. "Van-based robot hybrid pickup and delivery routing problem," European Journal of Operational Research, Elsevier, vol. 298(3), pages 894-914.
    7. Peng, Xiaoshuai & Zhang, Lele & Thompson, Russell G. & Wang, Kangzhou, 2023. "A three-phase heuristic for last-mile delivery with spatial-temporal consolidation and delivery options," International Journal of Production Economics, Elsevier, vol. 266(C).
    8. Liu, Dan & Yan, Pengyu & Pu, Ziyuan & Wang, Yinhai & Kaisar, Evangelos I., 2021. "Hybrid artificial immune algorithm for optimizing a Van-Robot E-grocery delivery system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    9. Yu, Vincent F. & Jodiawan, Panca & Hou, Ming-Lu & Gunawan, Aldy, 2021. "Design of a two-echelon freight distribution system in last-mile logistics considering covering locations and occasional drivers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    10. Li, Jiliu & Xu, Min & Sun, Peng, 2022. "Two-echelon capacitated vehicle routing problem with grouping constraints and simultaneous pickup and delivery," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 261-291.
    11. Zhu, Stuart X. & Ursavas, Evrim, 2018. "Design and analysis of a satellite network with direct delivery in the pharmaceutical industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 190-207.
    12. Dumez, Dorian & Tilk, Christian & Irnich, Stefan & Lehuédé, Fabien & Olkis, Katharina & Péton, Olivier, 2023. "A matheuristic for a 2-echelon vehicle routing problem with capacitated satellites and reverse flows," European Journal of Operational Research, Elsevier, vol. 305(1), pages 64-84.
    13. Li, Hongqi & Liu, Yinying & Jian, Xiaorong & Lu, Yingrong, 2018. "The two-echelon distribution system considering the real-time transshipment capacity varying," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 239-260.
    14. Li, Hongqi & Chen, Jun & Wang, Feilong & Bai, Ming, 2021. "Ground-vehicle and unmanned-aerial-vehicle routing problems from two-echelon scheme perspective: A review," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1078-1095.
    15. Zhou, Lin & Baldacci, Roberto & Vigo, Daniele & Wang, Xu, 2018. "A Multi-Depot Two-Echelon Vehicle Routing Problem with Delivery Options Arising in the Last Mile Distribution," European Journal of Operational Research, Elsevier, vol. 265(2), pages 765-778.
    16. Yue Lu & Maoxiang Lang & Xueqiao Yu & Shiqi Li, 2019. "A Sustainable Multimodal Transport System: The Two-Echelon Location-Routing Problem with Consolidation in the Euro–China Expressway," Sustainability, MDPI, vol. 11(19), pages 1-25, October.
    17. Li, Hongqi & Zhang, Lu & Lv, Tan & Chang, Xinyu, 2016. "The two-echelon time-constrained vehicle routing problem in linehaul-delivery systems," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 169-188.
    18. Nico Dellaert & Fardin Dashty Saridarq & Tom Van Woensel & Teodor Gabriel Crainic, 2019. "Branch-and-Price–Based Algorithms for the Two-Echelon Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 53(2), pages 463-479, March.
    19. Zhang, Lele & Ding, Pengyuan & Thompson, Russell G., 2023. "A stochastic formulation of the two-echelon vehicle routing and loading bay reservation problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    20. Liu, Tian & Luo, Zhixing & Qin, Hu & Lim, Andrew, 2018. "A branch-and-cut algorithm for the two-echelon capacitated vehicle routing problem with grouping constraints," European Journal of Operational Research, Elsevier, vol. 266(2), pages 487-497.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:304:y:2023:i:3:p:865-886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.