IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i14p5953-d1433894.html
   My bibliography  Save this article

Improving Order-Picking Performance in E-Commerce Warehouses through Entropy-Based Hierarchical Scattering

Author

Listed:
  • Nilendra Singh Pawar

    (S. P. Jain Institute of Management and Research, Mumbai 400058, India)

  • Subir S. Rao

    (S. P. Jain Institute of Management and Research, Mumbai 400058, India)

  • Gajendra K. Adil

    (Indian Institute of Technology Bombay, Mumbai 400506, India)

Abstract

The high service expectations of e-commerce customers are placing unprecedented demands on e-commerce warehouse workers, leading to higher fatigue and health-related disorders among these workers. Order picking in retail e-commerce fulfilment warehouses (REFWs) is highly labour-intensive and physically demanding activity. This is mainly due to the prevalence of single-unit orders and the expectation of quick order servicing. One strategy to reduce picking effort is the adoption of a scattered storage assignment policy, which spreads the inventory of each product across the entire warehouse. This paper proposes a new, hierarchical approach for the scattering of stock, along with an entropy-based measure for scattering. This measure overcomes some significant limitations of the existing scattering measures and captures the extent of scattering more effectively. We developed a storage assignment heuristic for the scattering of stock and conducted a simulation study to demonstrate its effectiveness in reducing the order-picking effort. Some valuable managerial insights were obtained using a simulation with different warehouse designs and operating parameters. This research also illustrates that the adoption of scattered storage requires careful consideration of the nature of the demand pattern in the warehouse.

Suggested Citation

  • Nilendra Singh Pawar & Subir S. Rao & Gajendra K. Adil, 2024. "Improving Order-Picking Performance in E-Commerce Warehouses through Entropy-Based Hierarchical Scattering," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:5953-:d:1433894
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/14/5953/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/14/5953/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Jingran & Onal, Sevilay & Das, Sanchoy, 2020. "The dynamic stocking location problem – Dispersing inventory in fulfillment warehouses with explosive storage," International Journal of Production Economics, Elsevier, vol. 224(C).
    2. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2010. "Research on warehouse design and performance evaluation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 203(3), pages 539-549, June.
    3. King-Wah Pang & Hau-Ling Chan, 2017. "Data mining-based algorithm for storage location assignment in a randomised warehouse," International Journal of Production Research, Taylor & Francis Journals, vol. 55(14), pages 4035-4052, July.
    4. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.
    5. Sevilay Onal & Jingran Zhang & Sanchoy Das, 2017. "Modelling and performance evaluation of explosive storage policies in internet fulfilment warehouses," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 5902-5915, October.
    6. Merlin M. Hackbart & Donald A. Anderson, 1975. "On Measuring Economic Diversification," Land Economics, University of Wisconsin Press, vol. 51(4), pages 374-378.
    7. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    8. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    9. Felix Weidinger & Nils Boysen, 2018. "Scattered Storage: How to Distribute Stock Keeping Units All Around a Mixed-Shelves Warehouse," Service Science, INFORMS, vol. 52(6), pages 1412-1427, December.
    10. Weidinger, Felix, 2018. "Picker routing in rectangular mixed shelves warehouses," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126186, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    11. Weidinger, Felix & Boysen, Nils, 2018. "Scattered Storage: How to Distribute Stock Keeping Units All Around a Mixed-Shelves Warehouse," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126188, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    12. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126185, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    13. Gray, Ann E. & Karmarkar, Uday S. & Seidmann, Abraham, 1992. "Design and operation of an order-consolidation warehouse: Models and application," European Journal of Operational Research, Elsevier, vol. 58(1), pages 14-36, April.
    14. Cormier, Gilles & Gunn, Eldon A., 1992. "A review of warehouse models," European Journal of Operational Research, Elsevier, vol. 58(1), pages 3-13, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Onal, Sevilay & Zhu, Wen & Das, Sanchoy, 2023. "Order picking heuristics for online order fulfillment warehouses with explosive storage," International Journal of Production Economics, Elsevier, vol. 256(C).
    2. Jiang, Min & Leung, K.H. & Lyu, Zhongyuan & Huang, George Q., 2020. "Picking-replenishment synchronization for robotic forward-reserve warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    3. Boysen, Nils & Schwerdfeger, Stefan & Stephan, Konrad, 2023. "A review of synchronization problems in parts-to-picker warehouses," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1374-1390.
    4. Guo, Xiaolong & Chen, Ran & Du, Shaofu & Yu, Yugang, 2021. "Storage assignment for newly arrived items in forward picking areas with limited open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    5. Laura Korbacher & Katrin Heßler & Stefan Irnich, 2023. "The Single Picker Routing Problem with Scattered Storage: Modeling and Evaluation of Routing and Storage Policies," Working Papers 2302, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    6. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2024. "Improving order picking efficiency through storage assignment optimization in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 316(2), pages 718-732.
    7. Gámez Albán, Harol Mauricio & Cornelissens, Trijntje & Sörensen, Kenneth, 2024. "A new policy for scattered storage assignment to minimize picking travel distances," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1006-1020.
    8. Laura Lüke & Katrin Heßler & Stefan Irnich, 2024. "The single picker routing problem with scattered storage: modeling and evaluation of routing and storage policies," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 909-951, September.
    9. Katrin Heßler & Stefan Irnich, 2023. "Exact Solution of the Single Picker Routing Problem with Scattered Storage," Working Papers 2303, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    10. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2022. "Rack retrieval and repositioning optimization problem in robotic mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    11. Xie, Lin & Li, Hanyi & Luttmann, Laurin, 2023. "Formulating and solving integrated order batching and routing in multi-depot AGV-assisted mixed-shelves warehouses," European Journal of Operational Research, Elsevier, vol. 307(2), pages 713-730.
    12. David Füßler & Nils Boysen & Konrad Stephan, 2019. "Trolley line picking: storage assignment and order sequencing to increase picking performance," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 1087-1121, December.
    13. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    14. Chen, Gang & Feng, Haolin & Luo, Kaiyi & Tang, Yanli, 2021. "Retrieval-oriented storage relocation optimization of an automated storage and retrieval system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    15. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    16. van der Gaast, Jelmer Pier & Weidinger, Felix, 2022. "A deep learning approach for the selection of an order picking system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 530-543.
    17. Mirzaei, Masoud & Zaerpour, Nima & de Koster, René, 2021. "The impact of integrated cluster-based storage allocation on parts-to-picker warehouse performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    18. Mustapha Haouassi & Yannick Kergosien & Jorge E. Mendoza & Louis-Martin Rousseau, 2022. "The integrated orderline batching, batch scheduling, and picker routing problem with multiple pickers: the benefits of splitting customer orders," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 614-645, September.
    19. Zhang, Jingran & Onal, Sevilay & Das, Sanchoy, 2020. "The dynamic stocking location problem – Dispersing inventory in fulfillment warehouses with explosive storage," International Journal of Production Economics, Elsevier, vol. 224(C).
    20. Su, Yixuan & Zhu, Xi & Yuan, Jinlong & Teo, Kok Lay & Li, Meixia & Li, Chunfa, 2023. "An extensible multi-block layout warehouse routing optimization model," European Journal of Operational Research, Elsevier, vol. 305(1), pages 222-239.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:5953-:d:1433894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.