IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i19p3089-d1491158.html
   My bibliography  Save this article

Applying the Simulated Annealing Algorithm to the Set Orienteering Problem with Mandatory Visits

Author

Listed:
  • Shih-Wei Lin

    (Department of Information Management, Chang Gung University, Taoyuan 33302, Taiwan
    Department of Industrial Engineering and Management, Ming Chi University of Technology, New Taipei 24303, Taiwan
    Department of Emergency Medicine, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan)

  • Sirui Guo

    (Department of Information Management, Chang Gung University, Taoyuan 33302, Taiwan)

  • Wen-Jie Wu

    (Department of Information Management, Chang Gung University, Taoyuan 33302, Taiwan)

Abstract

This study addresses the set orienteering problem with mandatory visits (SOPMV), a variant of the team orienteering problem (SOP). In SOPMV, certain critical sets must be visited. The study began by formulating the mathematical model for SOPMV. To tackle the challenge of obtaining a feasible route within time constraints using the original MILP approach, a two-stage mixed-integer linear programming (MILP) model is proposed. Subsequently, a simulated annealing (SA) algorithm and a dynamic programming method were employed to identify the optimal route. The proposed SA algorithm was used to solve the SOP and was compared to other algorithms, demonstrating its effectiveness. The SA was then applied to solve the SOPMV problem. The results indicate that the solutions obtained using SA are superior and more efficient compared to those derived from the original MILP and the two-stage MILP. Additionally, the results reveal that the solution quality deteriorates as the ratio of the set of mandatory visits increases or the maximum allowable travel time decreases. This study represents the first attempt to integrate mandatory visits into SOP, thereby establishing a new research direction in this area. The potential impact of this research is significant, as it introduces new possibilities for addressing complex combinatorial optimization problems.

Suggested Citation

  • Shih-Wei Lin & Sirui Guo & Wen-Jie Wu, 2024. "Applying the Simulated Annealing Algorithm to the Set Orienteering Problem with Mandatory Visits," Mathematics, MDPI, vol. 12(19), pages 1-24, October.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:3089-:d:1491158
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/19/3089/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/19/3089/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Archetti, Claudia & Carrabs, Francesco & Cerulli, Raffaele, 2018. "The Set Orienteering Problem," European Journal of Operational Research, Elsevier, vol. 267(1), pages 264-272.
    2. Angelelli, E. & Archetti, C. & Vindigni, M., 2014. "The Clustered Orienteering Problem," European Journal of Operational Research, Elsevier, vol. 238(2), pages 404-414.
    3. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    4. Keller, C. Peter, 1989. "Algorithms to solve the orienteering problem: A comparison," European Journal of Operational Research, Elsevier, vol. 41(2), pages 224-231, July.
    5. Chao, I-Ming & Golden, Bruce L. & Wasil, Edward A., 1996. "A fast and effective heuristic for the orienteering problem," European Journal of Operational Research, Elsevier, vol. 88(3), pages 475-489, February.
    6. Carrabs, Francesco, 2021. "A biased random-key genetic algorithm for the set orienteering problem," European Journal of Operational Research, Elsevier, vol. 292(3), pages 830-854.
    7. Bruce L. Golden & Larry Levy & Rakesh Vohra, 1987. "The orienteering problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(3), pages 307-318, June.
    8. Lu, Yongliang & Benlic, Una & Wu, Qinghua, 2018. "A memetic algorithm for the Orienteering Problem with Mandatory Visits and Exclusionary Constraints," European Journal of Operational Research, Elsevier, vol. 268(1), pages 54-69.
    9. Dontas, Michael & Sideris, Georgios & Manousakis, Eleftherios G. & Zachariadis, Emmanouil E., 2023. "An adaptive memory matheuristic for the set orienteering problem," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1010-1023.
    10. Dominique Feillet & Pierre Dejax & Michel Gendreau, 2005. "Traveling Salesman Problems with Profits," Transportation Science, INFORMS, vol. 39(2), pages 188-205, May.
    11. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Qinghua & He, Mu & Hao, Jin-Kao & Lu, Yongliang, 2024. "An effective hybrid evolutionary algorithm for the clustered orienteering problem," European Journal of Operational Research, Elsevier, vol. 313(2), pages 418-434.
    2. Pěnička, Robert & Faigl, Jan & Saska, Martin, 2019. "Variable Neighborhood Search for the Set Orienteering Problem and its application to other Orienteering Problem variants," European Journal of Operational Research, Elsevier, vol. 276(3), pages 816-825.
    3. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    4. Álvarez-Miranda, Eduardo & Luipersbeck, Martin & Sinnl, Markus, 2018. "Gotta (efficiently) catch them all: Pokémon GO meets Orienteering Problems," European Journal of Operational Research, Elsevier, vol. 265(2), pages 779-794.
    5. Angelelli, E. & Archetti, C. & Vindigni, M., 2014. "The Clustered Orienteering Problem," European Journal of Operational Research, Elsevier, vol. 238(2), pages 404-414.
    6. Wei Zhang & Kai Wang & Shuaian Wang & Gilbert Laporte, 2020. "Clustered coverage orienteering problem of unmanned surface vehicles for water sampling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(5), pages 353-367, August.
    7. Bian, Zheyong & Liu, Xiang, 2018. "A real-time adjustment strategy for the operational level stochastic orienteering problem: A simulation-aided optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 246-266.
    8. Dang, Duc-Cuong & Guibadj, Rym Nesrine & Moukrim, Aziz, 2013. "An effective PSO-inspired algorithm for the team orienteering problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 332-344.
    9. Kobeaga, Gorka & Rojas-Delgado, Jairo & Merino, María & Lozano, Jose A., 2024. "A revisited branch-and-cut algorithm for large-scale orienteering problems," European Journal of Operational Research, Elsevier, vol. 313(1), pages 44-68.
    10. Michael D. Moskal & Erdi Dasdemir & Rajan Batta, 2023. "Unmanned Aerial Vehicle Information Collection Missions with Uncertain Characteristics," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 120-137, January.
    11. Dontas, Michael & Sideris, Georgios & Manousakis, Eleftherios G. & Zachariadis, Emmanouil E., 2023. "An adaptive memory matheuristic for the set orienteering problem," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1010-1023.
    12. Balcik, Burcu, 2017. "Site selection and vehicle routing for post-disaster rapid needs assessment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 30-58.
    13. Orlis, Christos & Laganá, Demetrio & Dullaert, Wout & Vigo, Daniele, 2020. "Distribution with Quality of Service Considerations: The Capacitated Routing Problem with Profits and Service Level Requirements," Omega, Elsevier, vol. 93(C).
    14. Rahma Lahyani & Mahdi Khemakhem & Frédéric Semet, 2017. "A unified matheuristic for solving multi-constrained traveling salesman problems with profits," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 393-422, September.
    15. Archetti, C. & Carrabs, F. & Cerulli, R. & Laureana, F., 2024. "A new formulation and a branch-and-cut algorithm for the set orienteering problem," European Journal of Operational Research, Elsevier, vol. 314(2), pages 446-465.
    16. Freeman, Nickolas K. & Keskin, Burcu B. & Çapar, İbrahim, 2018. "Attractive orienteering problem with proximity and timing interactions," European Journal of Operational Research, Elsevier, vol. 266(1), pages 354-370.
    17. Carrabs, Francesco, 2021. "A biased random-key genetic algorithm for the set orienteering problem," European Journal of Operational Research, Elsevier, vol. 292(3), pages 830-854.
    18. Yang, Yu & Yan, Chiwei & Cao, Yufeng & Roberti, Roberto, 2023. "Planning robust drone-truck delivery routes under road traffic uncertainty," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1145-1160.
    19. Pamela J. Palomo-Martínez & M. Angélica Salazar-Aguilar & Víctor M. Albornoz, 2017. "Formulations for the orienteering problem with additional constraints," Annals of Operations Research, Springer, vol. 258(2), pages 503-545, November.
    20. Labadie, Nacima & Mansini, Renata & Melechovský, Jan & Wolfler Calvo, Roberto, 2012. "The Team Orienteering Problem with Time Windows: An LP-based Granular Variable Neighborhood Search," European Journal of Operational Research, Elsevier, vol. 220(1), pages 15-27.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:3089-:d:1491158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.