IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v318y2024i3p778-801.html
   My bibliography  Save this article

An effective multi-level memetic search with neighborhood reduction for the clustered team orienteering problem

Author

Listed:
  • He, Mu
  • Wu, Qinghua
  • Benlic, Una
  • Lu, Yongliang
  • Chen, Yuning

Abstract

The Clustered Team Orienteering Problem (CluTOP) extends the classic Clustered Orienteering Problem by considering the use of multiple vehicles. The problem is known to be NP-hard and can be used to formulate many real-life applications. This work presents a highly effective multi-level memetic search for CluTOP that combines a backbone-based edge assembly crossover to generate promising offspring solutions with an effective bilevel synergistic local search procedure at both cluster and customer levels to improve offspring solutions. Other novel features of the proposed approach include a joint use of three specific hash functions to identify the tabu status of candidate solutions at the cluster level, a multi-neighborhood search with inter-route and intra-route optimization at the customer level, a pre-processing neighborhood reduction strategy to avoid examining non-promising candidate solutions, and a strategy for controlled exploration of infeasible solutions. Extensive experimental results on 1848 benchmark instances convincingly demonstrate high competitiveness of the approach in terms of both solution quality and computational time, compared to the state-of-the-art heuristics from the literature. In particular, the proposed algorithm improves upon the existing best-known solutions for 294 instances, while matching the previous best-known results for all but 3 of the remaining instances. To gain further insights into the algorithm’s performance, additional experiments are conducted to analyze its main components.

Suggested Citation

  • He, Mu & Wu, Qinghua & Benlic, Una & Lu, Yongliang & Chen, Yuning, 2024. "An effective multi-level memetic search with neighborhood reduction for the clustered team orienteering problem," European Journal of Operational Research, Elsevier, vol. 318(3), pages 778-801.
  • Handle: RePEc:eee:ejores:v:318:y:2024:i:3:p:778-801
    DOI: 10.1016/j.ejor.2024.06.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724004636
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.06.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:318:y:2024:i:3:p:778-801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.