IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v29y2023i1d10.1007_s10732-022-09507-2.html
   My bibliography  Save this article

Self-adaptive heuristic algorithms for the dynamic and stochastic orienteering problem in autonomous transportation system

Author

Listed:
  • Bijun Wang

    (Stevens Institute of Technology)

  • Zheyong Bian

    (University of Houston)

  • Mo Mansouri

    (Stevens Institute of Technology)

Abstract

This paper studies a task execution and routing problem in the autonomous transportation system that maps to the famous orienteering problem (OP) in operations research. By extending the classical OP to stochastic and dynamic OP with stochastic travel time and service time, an investigation is conducted that aims to optimize the selection of travel routes with the objective of maximizing the total collected rewards in accordance with the time availability of self-adaptive agent (e.g., unmanned aircraft vehicles and unmanned ground vehicle). Three self-adaptive multi-stage heuristics-based adjustment strategies (i.e., Insertion-and-Removal Heuristics, Hybrid Simulated Annealing-Tabu Search-based Re-Optimization, and Threshold-based Re-Optimization) are proposed to equip the autonomous agent with the ability of real-time routing adjustment in the context of the dynamic and stochastic orienteering problem. Finally, benchmark simulation experiments are used to test the effectiveness of all the three proposed adjustment strategies. The experimental results show that, compared with a priori solutions acquired by a static meta-heuristic algorithm (Hybrid Simulated Annealing-Tabu Search algorithm), the three strategies can improve the solution qualities at different levels.

Suggested Citation

  • Bijun Wang & Zheyong Bian & Mo Mansouri, 2023. "Self-adaptive heuristic algorithms for the dynamic and stochastic orienteering problem in autonomous transportation system," Journal of Heuristics, Springer, vol. 29(1), pages 77-137, February.
  • Handle: RePEc:spr:joheur:v:29:y:2023:i:1:d:10.1007_s10732-022-09507-2
    DOI: 10.1007/s10732-022-09507-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-022-09507-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-022-09507-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asma Ben-Said & Racha El-Hajj & Aziz Moukrim, 2019. "A variable space search heuristic for the Capacitated Team Orienteering Problem," Journal of Heuristics, Springer, vol. 25(2), pages 273-303, April.
    2. Shahin Gelareh & Bernard Gendron & Saïd Hanafi & Rahimeh Neamatian Monemi & Raca Todosijević, 2020. "The selective traveling salesman problem with draft limits," Journal of Heuristics, Springer, vol. 26(3), pages 339-352, June.
    3. Lanah Evers & Twan Dollevoet & Ana Barros & Herman Monsuur, 2014. "Robust UAV mission planning," Annals of Operations Research, Springer, vol. 222(1), pages 293-315, November.
    4. Morteza Keshtkaran & Koorush Ziarati, 2016. "A novel GRASP solution approach for the Orienteering Problem," Journal of Heuristics, Springer, vol. 22(5), pages 699-726, October.
    5. Vassilis Papapanagiotou & Roberto Montemanni & Luca Maria Gambardella, 2016. "Sampling-Based Objective Function Evaluation Techniques for the Orienteering Problem with Stochastic Travel and Service Times," Operations Research Proceedings, in: Marco Lübbecke & Arie Koster & Peter Letmathe & Reinhard Madlener & Britta Peis & Grit Walther (ed.), Operations Research Proceedings 2014, edition 1, pages 445-450, Springer.
    6. Vicente Campos & Rafael Martí & Jesús Sánchez-Oro & Abraham Duarte, 2014. "GRASP with path relinking for the orienteering problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(12), pages 1800-1813, December.
    7. Matteo Fischetti & Juan José Salazar González & Paolo Toth, 1998. "Solving the Orienteering Problem through Branch-and-Cut," INFORMS Journal on Computing, INFORMS, vol. 10(2), pages 133-148, May.
    8. Jesse Pietz & Johannes O. Royset, 2013. "Generalized orienteering problem with resource dependent rewards," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(4), pages 294-312, June.
    9. Kothari, Ravi & Ghosh, Diptesh, 2013. "Tabu search for the single row facility layout problem using exhaustive 2-opt and insertion neighborhoods," European Journal of Operational Research, Elsevier, vol. 224(1), pages 93-100.
    10. Evers, Lanah & Barros, Ana Isabel & Monsuur, Herman & Wagelmans, Albert, 2014. "Online stochastic UAV mission planning with time windows and time-sensitive targets," European Journal of Operational Research, Elsevier, vol. 238(1), pages 348-362.
    11. Cédric Verbeeck, 2017. "Optimizing practical orienteering problems with stochastic time-dependent travel times: towards congestion free routes," 4OR, Springer, vol. 15(1), pages 109-110, March.
    12. Bruce L. Golden & Larry Levy & Rakesh Vohra, 1987. "The orienteering problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(3), pages 307-318, June.
    13. Dolinskaya, Irina & Shi, Zhenyu (Edwin) & Smilowitz, Karen, 2018. "Adaptive orienteering problem with stochastic travel times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 1-19.
    14. Oktay Yılmaz & Ertan Yakıcı & Mumtaz Karatas, 2019. "A UAV location and routing problem with spatio-temporal synchronization constraints solved by ant colony optimization," Journal of Heuristics, Springer, vol. 25(4), pages 673-701, October.
    15. Verbeeck, C. & Vansteenwegen, P. & Aghezzaf, E.-H., 2016. "Solving the stochastic time-dependent orienteering problem with time windows," European Journal of Operational Research, Elsevier, vol. 255(3), pages 699-718.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Qinghua & He, Mu & Hao, Jin-Kao & Lu, Yongliang, 2024. "An effective hybrid evolutionary algorithm for the clustered orienteering problem," European Journal of Operational Research, Elsevier, vol. 313(2), pages 418-434.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bian, Zheyong & Liu, Xiang, 2018. "A real-time adjustment strategy for the operational level stochastic orienteering problem: A simulation-aided optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 246-266.
    2. Shiri, Davood & Akbari, Vahid & Hassanzadeh, Ali, 2024. "The Capacitated Team Orienteering Problem: An online optimization framework with predictions of unknown accuracy," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
    3. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    4. Ruiz-Meza, José & Montoya-Torres, Jairo R., 2022. "A systematic literature review for the tourist trip design problem: Extensions, solution techniques and future research lines," Operations Research Perspectives, Elsevier, vol. 9(C).
    5. Krzysztof Ostrowski & Joanna Karbowska-Chilinska & Jolanta Koszelew & Pawel Zabielski, 2017. "Evolution-inspired local improvement algorithm solving orienteering problem," Annals of Operations Research, Springer, vol. 253(1), pages 519-543, June.
    6. Verbeeck, C. & Vansteenwegen, P. & Aghezzaf, E.-H., 2016. "Solving the stochastic time-dependent orienteering problem with time windows," European Journal of Operational Research, Elsevier, vol. 255(3), pages 699-718.
    7. Qinxiao Yu & Yossiri Adulyasak & Louis-Martin Rousseau & Ning Zhu & Shoufeng Ma, 2022. "Team Orienteering with Time-Varying Profit," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 262-280, January.
    8. Kobeaga, Gorka & Rojas-Delgado, Jairo & Merino, María & Lozano, Jose A., 2024. "A revisited branch-and-cut algorithm for large-scale orienteering problems," European Journal of Operational Research, Elsevier, vol. 313(1), pages 44-68.
    9. Lu, Yongliang & Benlic, Una & Wu, Qinghua, 2018. "A memetic algorithm for the Orienteering Problem with Mandatory Visits and Exclusionary Constraints," European Journal of Operational Research, Elsevier, vol. 268(1), pages 54-69.
    10. Dontas, Michael & Sideris, Georgios & Manousakis, Eleftherios G. & Zachariadis, Emmanouil E., 2023. "An adaptive memory matheuristic for the set orienteering problem," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1010-1023.
    11. Markus Sinnl, 2021. "Mixed-integer programming approaches for the time-constrained maximal covering routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 497-542, June.
    12. Gambardella, L.M. & Montemanni, R. & Weyland, D., 2012. "Coupling ant colony systems with strong local searches," European Journal of Operational Research, Elsevier, vol. 220(3), pages 831-843.
    13. Vansteenwegen, Pieter & Souffriau, Wouter & Berghe, Greet Vanden & Oudheusden, Dirk Van, 2009. "A guided local search metaheuristic for the team orienteering problem," European Journal of Operational Research, Elsevier, vol. 196(1), pages 118-127, July.
    14. H Tang & E Miller-Hooks, 2005. "Algorithms for a stochastic selective travelling salesperson problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 439-452, April.
    15. Wu, Qinghua & He, Mu & Hao, Jin-Kao & Lu, Yongliang, 2024. "An effective hybrid evolutionary algorithm for the clustered orienteering problem," European Journal of Operational Research, Elsevier, vol. 313(2), pages 418-434.
    16. Yu, Qinxiao & Fang, Kan & Zhu, Ning & Ma, Shoufeng, 2019. "A matheuristic approach to the orienteering problem with service time dependent profits," European Journal of Operational Research, Elsevier, vol. 273(2), pages 488-503.
    17. Bulhões, Teobaldo & Hà, Minh Hoàng & Martinelli, Rafael & Vidal, Thibaut, 2018. "The vehicle routing problem with service level constraints," European Journal of Operational Research, Elsevier, vol. 265(2), pages 544-558.
    18. Morteza Keshtkaran & Koorush Ziarati, 2016. "A novel GRASP solution approach for the Orienteering Problem," Journal of Heuristics, Springer, vol. 22(5), pages 699-726, October.
    19. Erdogan, Günes & Cordeau, Jean-François & Laporte, Gilbert, 2010. "The Attractive Traveling Salesman Problem," European Journal of Operational Research, Elsevier, vol. 203(1), pages 59-69, May.
    20. Dominique Feillet & Pierre Dejax & Michel Gendreau, 2005. "Traveling Salesman Problems with Profits," Transportation Science, INFORMS, vol. 39(2), pages 188-205, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:29:y:2023:i:1:d:10.1007_s10732-022-09507-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.