IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v311y2023i2p427-443.html
   My bibliography  Save this article

Ordinal optimization through multi-objective reformulation

Author

Listed:
  • Klamroth, Kathrin
  • Stiglmayr, Michael
  • Sudhoff, Julia

Abstract

We analyze combinatorial optimization problems with ordinal, i.e., non-additive, objective functions that assign categories (like good, medium and bad) rather than cost coefficients to the elements of feasible solutions. We review different optimality concepts for ordinal optimization problems and discuss their similarities and differences. We then focus on two prevalent optimality concepts that are shown to be equivalent. Our main focus lies on the investigation of a bijective linear transformation that transforms ordinal optimization problems to associated standard multi-objective optimization problems with binary cost coefficients. Since this transformation preserves all properties of the underlying problem, problem-specific solution methods remain applicable. A prominent example is dynamic programming and Bellman’s principle of optimality, that can be applied, e.g., to ordinal shortest path and ordinal knapsack problems. We investigate the interrelation between scalarization techniques and methods based on the hypervolume indicator when applied to the ordinal and the transformed problem, respectively. Furthermore, we extend our results to multi-objective optimization problems that combine ordinal and real-valued objective functions.

Suggested Citation

  • Klamroth, Kathrin & Stiglmayr, Michael & Sudhoff, Julia, 2023. "Ordinal optimization through multi-objective reformulation," European Journal of Operational Research, Elsevier, vol. 311(2), pages 427-443.
  • Handle: RePEc:eee:ejores:v:311:y:2023:i:2:p:427-443
    DOI: 10.1016/j.ejor.2023.04.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723003399
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.04.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fishburn, Peter C. & LaValle, Irving H., 1996. "Binary interactions and subset choice," European Journal of Operational Research, Elsevier, vol. 92(1), pages 182-192, July.
    2. Schäfer, Luca E. & Dietz, Tobias & Fröhlich, Nicolas & Ruzika, Stefan & Figueira, José R., 2020. "Shortest paths with ordinal weights," European Journal of Operational Research, Elsevier, vol. 280(3), pages 1160-1170.
    3. Anthony Przybylski & Xavier Gandibleux & Matthias Ehrgott, 2010. "A Recursive Algorithm for Finding All Nondominated Extreme Points in the Outcome Set of a Multiobjective Integer Programme," INFORMS Journal on Computing, INFORMS, vol. 22(3), pages 371-386, August.
    4. José Figueira & Luís Paquete & Marco Simões & Daniel Vanderpooten, 2013. "Algorithmic improvements on dynamic programming for the bi-objective {0,1} knapsack problem," Computational Optimization and Applications, Springer, vol. 56(1), pages 97-111, September.
    5. Kathrin Klamroth & Margaret M. Wiecek, 2000. "Dynamic programming approaches to the multiple criteria knapsack problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(1), pages 57-76, February.
    6. Steven J. Brams & Paul H. Edelman & Peter C. Fishburn, 2003. "Fair Division Of Indivisible Items," Theory and Decision, Springer, vol. 55(2), pages 147-180, September.
    7. Edwin M. Bartee, 1971. "Problem Solving with Ordinal Measurement," Management Science, INFORMS, vol. 17(10), pages 622-633, June.
    8. Richard Bellman, 1957. "On a Dynamic Programming Approach to the Caterer Problem--I," Management Science, INFORMS, vol. 3(3), pages 270-278, April.
    9. Klamroth, Kathrin & Lacour, Renaud & Vanderpooten, Daniel, 2015. "On the representation of the search region in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 245(3), pages 767-778.
    10. Przybylski Anthony & Gandibleux Xavier & Matthias Ehrgott, 2009. "Computational Results for Four Exact Methods to Solve the Three-Objective Assignment Problem," Lecture Notes in Economics and Mathematical Systems, in: Vincent Barichard & Matthias Ehrgott & Xavier Gandibleux & Vincent T'Kindt (ed.), Multiobjective Programming and Goal Programming, pages 79-88, Springer.
    11. H. P. Benson & E. Sun, 2000. "Outcome Space Partition of the Weight Set in Multiobjective Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 105(1), pages 17-36, April.
    12. Matthias Ehrgott, 2005. "Multicriteria Optimization," Springer Books, Springer, edition 0, number 978-3-540-27659-3, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Bergman & Merve Bodur & Carlos Cardonha & Andre A. Cire, 2022. "Network Models for Multiobjective Discrete Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 990-1005, March.
    2. Stephan Helfrich & Tyler Perini & Pascal Halffmann & Natashia Boland & Stefan Ruzika, 2023. "Analysis of the weighted Tchebycheff weight set decomposition for multiobjective discrete optimization problems," Journal of Global Optimization, Springer, vol. 86(2), pages 417-440, June.
    3. Stephan Helfrich & Kathrin Prinz & Stefan Ruzika, 2024. "The Weighted p-Norm Weight Set Decomposition for Multiobjective Discrete Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1187-1216, September.
    4. Gabriele Eichfelder & Peter Kirst & Laura Meng & Oliver Stein, 2021. "A general branch-and-bound framework for continuous global multiobjective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 195-227, May.
    5. Gholamreza Shojatalab & Seyed Hadi Nasseri & Iraj Mahdavi, 2023. "New multi-objective optimization model for tourism systems with fuzzy data and new approach developed epsilon constraint method," OPSEARCH, Springer;Operational Research Society of India, vol. 60(3), pages 1360-1385, September.
    6. Gabriele Eichfelder & Oliver Stein & Leo Warnow, 2024. "A Solver for Multiobjective Mixed-Integer Convex and Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1736-1766, November.
    7. Britta Schulze & Kathrin Klamroth & Michael Stiglmayr, 2019. "Multi-objective unconstrained combinatorial optimization: a polynomial bound on the number of extreme supported solutions," Journal of Global Optimization, Springer, vol. 74(3), pages 495-522, July.
    8. Bashir Bashir & Özlem Karsu, 2022. "Solution approaches for equitable multiobjective integer programming problems," Annals of Operations Research, Springer, vol. 311(2), pages 967-995, April.
    9. Przybylski, Anthony & Gandibleux, Xavier, 2017. "Multi-objective branch and bound," European Journal of Operational Research, Elsevier, vol. 260(3), pages 856-872.
    10. Doğan, Ilgın & Lokman, Banu & Köksalan, Murat, 2022. "Representing the nondominated set in multi-objective mixed-integer programs," European Journal of Operational Research, Elsevier, vol. 296(3), pages 804-818.
    11. Mesquita-Cunha, Mariana & Figueira, José Rui & Barbosa-Póvoa, Ana Paula, 2023. "New ϵ−constraint methods for multi-objective integer linear programming: A Pareto front representation approach," European Journal of Operational Research, Elsevier, vol. 306(1), pages 286-307.
    12. Melih Ozlen & Benjamin A. Burton & Cameron A. G. MacRae, 2014. "Multi-Objective Integer Programming: An Improved Recursive Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 470-482, February.
    13. Julius Bauß & Michael Stiglmayr, 2024. "Augmenting bi-objective branch and bound by scalarization-based information," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 85-121, August.
    14. Gabriele Eichfelder & Leo Warnow, 2022. "An approximation algorithm for multi-objective optimization problems using a box-coverage," Journal of Global Optimization, Springer, vol. 83(2), pages 329-357, June.
    15. Pham Thi Hoai & Hoai An Le Thi & Nguyen Canh Nam, 2021. "Half-open polyblock for the representation of the search region in multiobjective optimization problems: its application and computational aspects," 4OR, Springer, vol. 19(1), pages 41-70, March.
    16. Forget, Nicolas & Gadegaard, Sune Lauth & Nielsen, Lars Relund, 2022. "Warm-starting lower bound set computations for branch-and-bound algorithms for multi objective integer linear programs," European Journal of Operational Research, Elsevier, vol. 302(3), pages 909-924.
    17. Özgür Özpeynirci & Murat Köksalan, 2010. "An Exact Algorithm for Finding Extreme Supported Nondominated Points of Multiobjective Mixed Integer Programs," Management Science, INFORMS, vol. 56(12), pages 2302-2315, December.
    18. Gabriele Eichfelder & Leo Warnow, 2024. "A hybrid patch decomposition approach to compute an enclosure for multi-objective mixed-integer convex optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 291-320, August.
    19. Özgür Özpeynirci, 2017. "On nadir points of multiobjective integer programming problems," Journal of Global Optimization, Springer, vol. 69(3), pages 699-712, November.
    20. Kerstin Dächert & Tino Fleuren & Kathrin Klamroth, 2024. "A simple, efficient and versatile objective space algorithm for multiobjective integer programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 351-384, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:311:y:2023:i:2:p:427-443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.