Algorithmic improvements on dynamic programming for the bi-objective {0,1} knapsack problem
Author
Abstract
Suggested Citation
DOI: 10.1007/s10589-013-9551-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Teng, Junn-Yuan & Tzeng, Gwo-Hshiung, 1996. "A multiobjective programming approach for selecting non-independent transportation investment alternatives," Transportation Research Part B: Methodological, Elsevier, vol. 30(4), pages 291-307, August.
- Thomas Erlebach & Hans Kellerer & Ulrich Pferschy, 2002. "Approximating Multiobjective Knapsack Problems," Management Science, INFORMS, vol. 48(12), pages 1603-1612, December.
- Y. P. Aneja & K. P. K. Nair, 1979. "Bicriteria Transportation Problem," Management Science, INFORMS, vol. 25(1), pages 73-78, January.
- Bazgan, Cristina & Hugot, Hadrien & Vanderpooten, Daniel, 2009. "Implementing an efficient fptas for the 0-1 multi-objective knapsack problem," European Journal of Operational Research, Elsevier, vol. 198(1), pages 47-56, October.
- Gomes da Silva, Carlos & Climaco, Joao & Figueira, Jose, 2006. "A scatter search method for bi-criteria {0, 1}-knapsack problems," European Journal of Operational Research, Elsevier, vol. 169(2), pages 373-391, March.
- Jenkins, Larry, 2002. "A bicriteria knapsack program for planning remediation of contaminated lightstation sites," European Journal of Operational Research, Elsevier, vol. 140(2), pages 427-433, July.
- David Pisinger, 1997. "A Minimal Algorithm for the 0-1 Knapsack Problem," Operations Research, INFORMS, vol. 45(5), pages 758-767, October.
- G. L. Nemhauser & Z. Ullmann, 1969. "Discrete Dynamic Programming and Capital Allocation," Management Science, INFORMS, vol. 15(9), pages 494-505, May.
- Gomes da Silva, Carlos & Figueira, Jose & Climaco, Joao, 2007. "Integrating partial optimization with scatter search for solving bi-criteria {0, 1}-knapsack problems," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1656-1677, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rong, Aiying & Figueira, José Rui, 2014. "Dynamic programming algorithms for the bi-objective integer knapsack problem," European Journal of Operational Research, Elsevier, vol. 236(1), pages 85-99.
- Audrey Cerqueus & Xavier Gandibleux & Anthony Przybylski & Frédéric Saubion, 2017. "On branching heuristics for the bi-objective 0/1 unidimensional knapsack problem," Journal of Heuristics, Springer, vol. 23(5), pages 285-319, October.
- Bashir Bashir & Özlem Karsu, 2022. "Solution approaches for equitable multiobjective integer programming problems," Annals of Operations Research, Springer, vol. 311(2), pages 967-995, April.
- Klamroth, Kathrin & Stiglmayr, Michael & Sudhoff, Julia, 2023. "Ordinal optimization through multi-objective reformulation," European Journal of Operational Research, Elsevier, vol. 311(2), pages 427-443.
- Pedro Correia & Luís Paquete & José Rui Figueira, 2021. "Finding multi-objective supported efficient spanning trees," Computational Optimization and Applications, Springer, vol. 78(2), pages 491-528, March.
- David Bergman & Merve Bodur & Carlos Cardonha & Andre A. Cire, 2022. "Network Models for Multiobjective Discrete Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 990-1005, March.
- Rong, Aiying & Figueira, José Rui & Lahdelma, Risto, 2015. "A two phase approach for the bi-objective non-convex combined heat and power production planning problem," European Journal of Operational Research, Elsevier, vol. 245(1), pages 296-308.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rong, Aiying & Figueira, José Rui, 2013. "A reduction dynamic programming algorithm for the bi-objective integer knapsack problem," European Journal of Operational Research, Elsevier, vol. 231(2), pages 299-313.
- Rong, Aiying & Figueira, José Rui, 2014. "Dynamic programming algorithms for the bi-objective integer knapsack problem," European Journal of Operational Research, Elsevier, vol. 236(1), pages 85-99.
- Florios, Kostas & Mavrotas, George & Diakoulaki, Danae, 2010. "Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 203(1), pages 14-21, May.
- Gomes da Silva, Carlos & Figueira, Jose & Climaco, Joao, 2007. "Integrating partial optimization with scatter search for solving bi-criteria {0, 1}-knapsack problems," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1656-1677, March.
- Fritz Bökler & Markus Chimani & Mirko H. Wagner, 2022. "On the rectangular knapsack problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 149-160, August.
- Barbati, Maria & Greco, Salvatore & Kadziński, Miłosz & Słowiński, Roman, 2018. "Optimization of multiple satisfaction levels in portfolio decision analysis," Omega, Elsevier, vol. 78(C), pages 192-204.
- Wilbaut, Christophe & Todosijevic, Raca & Hanafi, Saïd & Fréville, Arnaud, 2023. "Heuristic and exact reduction procedures to solve the discounted 0–1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 304(3), pages 901-911.
- Britta Schulze & Kathrin Klamroth & Michael Stiglmayr, 2019. "Multi-objective unconstrained combinatorial optimization: a polynomial bound on the number of extreme supported solutions," Journal of Global Optimization, Springer, vol. 74(3), pages 495-522, July.
- Daniel Vanderpooten & Lakmali Weerasena & Margaret M. Wiecek, 2017. "Covers and approximations in multiobjective optimization," Journal of Global Optimization, Springer, vol. 67(3), pages 601-619, March.
- Abraham Duarte & Juan Pantrigo & Eduardo Pardo & Nenad Mladenovic, 2015. "Multi-objective variable neighborhood search: an application to combinatorial optimization problems," Journal of Global Optimization, Springer, vol. 63(3), pages 515-536, November.
- Bazgan, Cristina & Hugot, Hadrien & Vanderpooten, Daniel, 2009. "Implementing an efficient fptas for the 0-1 multi-objective knapsack problem," European Journal of Operational Research, Elsevier, vol. 198(1), pages 47-56, October.
- Bas, Esra, 2011. "An investment plan for preventing child injuries using risk priority number of failure mode and effects analysis methodology and a multi-objective, multi-dimensional mixed 0-1 knapsack model," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 748-756.
- S. Dutta & S. Acharya & Rajashree Mishra, 2016. "Genetic algorithm based fuzzy stochastic transportation programming problem with continuous random variables," OPSEARCH, Springer;Operational Research Society of India, vol. 53(4), pages 835-872, December.
- Zhong, Tao & Young, Rhonda, 2010. "Multiple Choice Knapsack Problem: Example of planning choice in transportation," Evaluation and Program Planning, Elsevier, vol. 33(2), pages 128-137, May.
- Yang, X. Q. & Goh, C. J., 1997. "A method for convex curve approximation," European Journal of Operational Research, Elsevier, vol. 97(1), pages 205-212, February.
- Aritra Pal & Hadi Charkhgard, 2019. "A Feasibility Pump and Local Search Based Heuristic for Bi-Objective Pure Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 115-133, February.
- KIKOMBA KAHUNGU, Michaël & MABELA MAKENGO MATENDO, Rostin & M. NGOIE, Ruffin-Benoît & MAKENGO MBAMBALU, Fréderic & OKITONYUMBE Y.F, Joseph, 2013. "Les fondements mathématiques pour une aide à la décision du réseau de transport aérien : cas de la République Démocratique du Congo [Mathematical Foundation for Air Traffic Network Decision Aid : C," MPRA Paper 68533, University Library of Munich, Germany, revised Mar 2013.
- Przybylski, Anthony & Gandibleux, Xavier, 2017. "Multi-objective branch and bound," European Journal of Operational Research, Elsevier, vol. 260(3), pages 856-872.
- Singh, Preetvanti & Saxena, P. K., 2003. "The multiple objective time transportation problem with additional restrictions," European Journal of Operational Research, Elsevier, vol. 146(3), pages 460-476, May.
- Fujimoto, Masako & Yamada, Takeo, 2006. "An exact algorithm for the knapsack sharing problem with common items," European Journal of Operational Research, Elsevier, vol. 171(2), pages 693-707, June.
More about this item
Keywords
Bi-objective 0-1 knapsack problems; Multi-objective combinatorial optimization; Bounds sets; Dichotomic search; Bi-objective simplex algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:56:y:2013:i:1:p:97-111. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.