IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v68y2020i2p516-533.html
   My bibliography  Save this article

Bicriteria Approximation of Chance-Constrained Covering Problems

Author

Listed:
  • Weijun Xie

    (Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 2406)

  • Shabbir Ahmed

    (School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

Abstract

A chance-constrained optimization problem involves constraints with random data that can be violated with probability bounded from above by a prespecified small risk parameter. Such constraints are used to model reliability requirements in a variety of application areas, such as finance, energy, service, and manufacturing. Except under very special conditions, chance-constrained problems are extremely difficult. There has been a great deal of elegant work on developing tractable approximations of chance constraints. Unfortunately, none of these approaches comes with a constant factor approximation guarantee. We show that such a guarantee is impossible by proving an inapproximability result. By contrast, for a large class of chance-constrained covering problems, we propose a bicriteria approximation scheme. Our scheme finds a solution whose violation probability may be larger than but is within a constant factor of the specified risk parameter and whose objective value is within a constant factor of the true optimal value. Key to our developments is the construction of a tractable convex relaxation of a chance-constrained problem and an appropriate scaling of a solution to this relaxation. We extend our approximation results to the setting in which the underlying distribution of the constraint data is not known. That is, we consider distributionally robust chance-constrained covering problems with convex moment and Wasserstein ambiguity sets and provide bicriteria approximation results.

Suggested Citation

  • Weijun Xie & Shabbir Ahmed, 2020. "Bicriteria Approximation of Chance-Constrained Covering Problems," Operations Research, INFORMS, vol. 68(2), pages 516-533, March.
  • Handle: RePEc:inm:oropre:v:68:y:2020:i:2:p:516-533
    DOI: 10.1287/opre.2019.1866
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2019.1866
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2019.1866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    2. Anupam Gupta & Viswanath Nagarajan, 2014. "Approximating Sparse Covering Integer Programs Online," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 998-1011, November.
    3. Talluri, Srinivas & Narasimhan, Ram & Nair, Anand, 2006. "Vendor performance with supply risk: A chance-constrained DEA approach," International Journal of Production Economics, Elsevier, vol. 100(2), pages 212-222, April.
    4. Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
    5. B. K. Pagnoncelli & S. Ahmed & A. Shapiro, 2009. "Sample Average Approximation Method for Chance Constrained Programming: Theory and Applications," Journal of Optimization Theory and Applications, Springer, vol. 142(2), pages 399-416, August.
    6. QIU, Feng & AHMED, Shabbir & DEY, Santanu S & WOLSEY, Laurence A, 2014. "Covering linear programming with violations," LIDAM Reprints CORE 2618, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Feng Qiu & Shabbir Ahmed & Santanu S. Dey & Laurence A. Wolsey, 2014. "Covering Linear Programming with Violations," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 531-546, August.
    8. G. C. Calafiore & L. El Ghaoui, 2006. "On Distributionally Robust Chance-Constrained Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 130(1), pages 1-22, July.
    9. Grani A. Hanasusanto & Vladimir Roitch & Daniel Kuhn & Wolfram Wiesemann, 2017. "Ambiguous Joint Chance Constraints Under Mean and Dispersion Information," Operations Research, INFORMS, vol. 65(3), pages 751-767, June.
    10. Niv Buchbinder & Joseph (Seffi) Naor, 2009. "Online Primal-Dual Algorithms for Covering and Packing," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 270-286, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ran Ji & Miguel A. Lejeune, 2021. "Data-driven distributionally robust chance-constrained optimization with Wasserstein metric," Journal of Global Optimization, Springer, vol. 79(4), pages 779-811, April.
    2. Esteban-Pérez, Adrián & Morales, Juan M., 2023. "Distributionally robust optimal power flow with contextual information," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1047-1058.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Mengshi & Nakao, Hideaki & Shen, Siqian & Zhao, Lin, 2021. "Non-profit resource allocation and service scheduling with cross-subsidization and uncertain resource consumptions," Omega, Elsevier, vol. 99(C).
    2. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    3. Zheng Zhang & Brian T. Denton & Xiaolan Xie, 2020. "Branch and Price for Chance-Constrained Bin Packing," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 547-564, July.
    4. Shen Peng & Jie Jiang, 2021. "Stochastic mathematical programs with probabilistic complementarity constraints: SAA and distributionally robust approaches," Computational Optimization and Applications, Springer, vol. 80(1), pages 153-184, September.
    5. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    6. Jiang, Jie & Peng, Shen, 2024. "Mathematical programs with distributionally robust chance constraints: Statistical robustness, discretization and reformulation," European Journal of Operational Research, Elsevier, vol. 313(2), pages 616-627.
    7. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    8. Roos, Ernst & den Hertog, Dick, 2019. "Reducing conservatism in robust optimization," Other publications TiSEM ad0238cd-de7a-4366-b487-b, Tilburg University, School of Economics and Management.
    9. Xiaodi Bai & Jie Sun & Xiaojin Zheng, 2021. "An Augmented Lagrangian Decomposition Method for Chance-Constrained Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1056-1069, July.
    10. Yongjia Song & James R. Luedtke & Simge Küçükyavuz, 2014. "Chance-Constrained Binary Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 735-747, November.
    11. L. Jeff Hong & Zhaolin Hu & Liwei Zhang, 2014. "Conditional Value-at-Risk Approximation to Value-at-Risk Constrained Programs: A Remedy via Monte Carlo," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 385-400, May.
    12. Grani A. Hanasusanto & Vladimir Roitch & Daniel Kuhn & Wolfram Wiesemann, 2017. "Ambiguous Joint Chance Constraints Under Mean and Dispersion Information," Operations Research, INFORMS, vol. 65(3), pages 751-767, June.
    13. Liu, Ming & Liu, Xin & Chu, Feng & Zheng, Feifeng & Chu, Chengbin, 2019. "Distributionally robust inventory routing problem to maximize the service level under limited budget," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 190-211.
    14. Guanglin Xu & Samuel Burer, 2018. "A data-driven distributionally robust bound on the expected optimal value of uncertain mixed 0-1 linear programming," Computational Management Science, Springer, vol. 15(1), pages 111-134, January.
    15. Guopeng Song & Roel Leus, 2022. "Parallel Machine Scheduling Under Uncertainty: Models and Exact Algorithms," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3059-3079, November.
    16. Shanshan Wang & Jinlin Li & Sanjay Mehrotra, 2021. "Chance-Constrained Multiple Bin Packing Problem with an Application to Operating Room Planning," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1661-1677, October.
    17. Yan Deng & Huiwen Jia & Shabbir Ahmed & Jon Lee & Siqian Shen, 2021. "Scenario Grouping and Decomposition Algorithms for Chance-Constrained Programs," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 757-773, May.
    18. Ernst Roos & Dick den Hertog, 2020. "Reducing Conservatism in Robust Optimization," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1109-1127, October.
    19. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    20. Rashed Khanjani-Shiraz & Ali Babapour-Azar & Zohreh Hosseini-Noudeh & Panos M. Pardalos, 2022. "Distributionally robust maximum probability shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 140-167, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:68:y:2020:i:2:p:516-533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.