IDEAS home Printed from https://ideas.repec.org/p/inn/wpaper/2013-24.html
   My bibliography  Save this paper

Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape

Author

Listed:
  • Nadja Klein
  • Michel Denuit
  • Stefan Lang
  • Thomas Kneib

Abstract

Generalized additive models for location, scale and shape define a flexible, semi-parametric class of regression models for analyzing insurance data in which the exponential family assumption for the response is relaxed. This approach allows the actuary to include risk factors not only in the mean but also in other parameters governing the claiming behavior, like the degree of residual heterogeneity or the no-claim probability. In this broader setting, the Negative Binomial regression with cell-specific heterogeneity and the zero-inflated Poisson regression with cell-specific additional probability mass at zero are applied to model claim frequencies. Models for claim severities that can be applied either per claim or aggregated per year are also presented. Bayesian inference is based on efficient Markov chain Monte Carlo simulation techniques and allows for the simultaneous estimation of possible nonlinear effects, spatial variations and interactions between risk factors within the data set. To illustrate the relevance of this approach, a detailed case study is proposed based on the Belgian motor insurance portfolio studied in Denuit and Lang (2004).

Suggested Citation

  • Nadja Klein & Michel Denuit & Stefan Lang & Thomas Kneib, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," Working Papers 2013-24, Faculty of Economics and Statistics, Universität Innsbruck.
  • Handle: RePEc:inn:wpaper:2013-24
    as

    Download full text from publisher

    File URL: https://www2.uibk.ac.at/downloads/c4041030/wpaper/2013-24.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rob Kaas & Marc Goovaerts & Jan Dhaene & Michel Denuit, 2008. "Modern Actuarial Risk Theory," Springer Books, Springer, edition 2, number 978-3-540-70998-5, June.
    2. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
    3. Gregori Baetschmann & Rainer Winkelmann, 2012. "Modelling zero-inflated count data when exposure varies: with an application to sick leave," ECON - Working Papers 061, Department of Economics - University of Zurich.
    4. Jullion, Astrid & Lambert, Philippe, 2007. "Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2542-2558, February.
    5. S. N. Wood, 2000. "Modelling and smoothing parameter estimation with multiple quadratic penalties," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 413-428.
    6. Simon N. Wood, 2004. "Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 673-686, January.
    7. Yip, Karen C.H. & Yau, Kelvin K.W., 2005. "On modeling claim frequency data in general insurance with extra zeros," Insurance: Mathematics and Economics, Elsevier, vol. 36(2), pages 153-163, April.
    8. Pigeon, Mathieu & Denuit, Michel, 2011. "Composite Lognormal-Pareto model with random threshold," LIDAM Reprints ISBA 2011020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Nadja Klein & Thomas Kneib & Stefan Lang, 2013. "Bayesian generalized additive models for location, scale and shape for zero-inflated and overdispersed count data," Working Papers 2013-12, Faculty of Economics and Statistics, Universität Innsbruck.
    10. X. Lin & D. Zhang, 1999. "Inference in generalized additive mixed modelsby using smoothing splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 381-400, April.
    11. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, January.
    12. Ludwig Fahrmeir & Stefan Lang, 2001. "Bayesian inference for generalized additive mixed models based on Markov random field priors," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(2), pages 201-220.
    13. Denuit, Michel & Lang, Stefan, 2004. "Non-life rate-making with Bayesian GAMs," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 627-647, December.
    14. Tilmann Gneiting & Roopesh Ranjan, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 411-422, July.
    15. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    16. Nadja Klein & Thomas Kneib & Stefan Lang, 2013. "Bayesian Structured Additive Distributional Regression," Working Papers 2013-23, Faculty of Economics and Statistics, Universität Innsbruck.
    17. Simon N. Wood, 2008. "Fast stable direct fitting and smoothness selection for generalized additive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 495-518, July.
    18. Gschlossl, Susanne & Schoenmaekers, Pascal & Denuit, Michel, 2011. "Risk classification in life insurance: Methodology and case study," LIDAM Reprints ISBA 2011021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Gneiting, Tilmann & Ranjan, Roopesh, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 411-422.
    20. Brezger, Andreas & Lang, Stefan, 2006. "Generalized structured additive regression based on Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 967-991, February.
    21. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
    22. Stasinopoulos, D. Mikis & Rigby, Robert A., 2007. "Generalized Additive Models for Location Scale and Shape (GAMLSS) in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 23(i07).
    23. Stefan Lang & Nikolaus Umlauf & Peter Wechselberger & Kenneth Harttgen & Thomas Kneib, 2012. "Multilevel structured additive regression," Working Papers 2012-07, Faculty of Economics and Statistics, Universität Innsbruck.
    24. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, January.
    25. M. P. Wand, 2003. "Smoothing and mixed models," Computational Statistics, Springer, vol. 18(2), pages 223-249, July.
    26. Ludwig Fahrmeir & Stefan Lang, 2001. "Bayesian Semiparametric Regression Analysis of Multicategorical Time-Space Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 11-30, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," LIDAM Discussion Papers ISBA 2013045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2014. "Nonlife ratemaking and risk management with Bayesian generalized additive models for location, scale, and shape," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 225-249.
    3. Nadja Klein & Thomas Kneib & Stefan Lang, 2015. "Bayesian Generalized Additive Models for Location, Scale, and Shape for Zero-Inflated and Overdispersed Count Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 405-419, March.
    4. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    5. Belitz, Christiane & Lang, Stefan, 2008. "Simultaneous selection of variables and smoothing parameters in structured additive regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 61-81, September.
    6. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    7. Nicole H. Augustin & Stefan Lang & Monica Musio & Klaus Von Wilpert, 2007. "A spatial model for the needle losses of pine‐trees in the forests of Baden‐Württemberg: an application of Bayesian structured additive regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(1), pages 29-50, January.
    8. Denuit, Michel & Lang, Stefan, 2004. "Non-life rate-making with Bayesian GAMs," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 627-647, December.
    9. Stefan Lang & Nikolaus Umlauf & Peter Wechselberger & Kenneth Harttgen & Thomas Kneib, 2012. "Multilevel structured additive regression," Working Papers 2012-07, Faculty of Economics and Statistics, Universität Innsbruck.
    10. Umlauf, Nikolaus & Adler, Daniel & Kneib, Thomas & Lang, Stefan & Zeileis, Achim, 2015. "Structured Additive Regression Models: An R Interface to BayesX," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i21).
    11. Takuma Yoshida, 2016. "Asymptotics and smoothing parameter selection for penalized spline regression with various loss functions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(4), pages 278-303, November.
    12. Rodríguez-Álvarez, María Xosé & Lee, Dae-Jin & Kneib, Thomas & Durbán, María & Eilers, Paul, 2013. "Fast algorithm for smoothing parameter selection in multidimensional generalized P-splines," DES - Working Papers. Statistics and Econometrics. WS ws133026, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Simon N. Wood, 2011. "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 3-36, January.
    14. Brezger, Andreas & Lang, Stefan, 2006. "Generalized structured additive regression based on Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 967-991, February.
    15. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    16. Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
    17. Musolesi Antonio & Mazzanti Massimiliano, 2014. "Nonlinearity, heterogeneity and unobserved effects in the carbon dioxide emissions-economic development relation for advanced countries," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(5), pages 521-541, December.
    18. Sylvie Charlot & Riccardo Crescenzi & Antonio Musolesi, 2014. "Augmented and Unconstrained: revisiting the Regional Knowledge Production Function," SEEDS Working Papers 2414, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Aug 2014.
    19. Paciorek, Christopher J., 2007. "Computational techniques for spatial logistic regression with large data sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3631-3653, May.
    20. Mazzanti, Massimiliano & Musolesi, Antonio, 2013. "Nonlinearity, Heterogeneity and Unobserved Effects in the CO2-income Relation for Advanced Countries," Climate Change and Sustainable Development 162374, Fondazione Eni Enrico Mattei (FEEM).

    More about this item

    Keywords

    overdispersed count data; mixed Poisson regression; zero-inflated Poisson; Negative Binomial; zero-adjusted models; MCMC; probabilistic forecasts;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inn:wpaper:2013-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Judith Courian (email available below). General contact details of provider: https://edirc.repec.org/data/fuibkat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.