IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v10y2022i10p187-d927054.html
   My bibliography  Save this article

Factors Driving Duration to Cross-Selling in Non-Life Insurance: New Empirical Evidence from Switzerland

Author

Listed:
  • Yves Staudt

    (Center of Data Analysis, Visualisation and Simulation, University of Applied Sciences of the Grisons, Ringstrasse 34, 7000 Chur, Switzerland)

  • Joël Wagner

    (Department of Actuarial Science, Faculty of Business and Economics (HEC Lausanne), University of Lausanne, Chamberonne—Extranef, 1015 Lausanne, Switzerland
    Swiss Finance Institute, University of Lausanne, 1015 Lausanne, Switzerland)

Abstract

Customer relationship management and marketing analytics have become critical for non-life insurers operating in highly competitive markets. As it is easier to develop an existing customer than to acquire a new one, cross-selling and retention are key activities. In this research, we focus on both car and household-liability insurance products and consider the time a customer owning only a single product takes before buying the other product at the same insurer. Based on longitudinal consumer data from a Swiss insurance company covering the period from 2011 to 2015, we aim to study the factors driving the duration to cross-selling. Given the different dynamics observed in both products, we separately study the car and household-liability insurance customer cohorts. Considering the framework of survival analysis, we provide descriptive statistics and Kaplan–Meier estimates along major customer characteristics, contract history and distribution channel usage. For the econometric analysis of the duration, we compare the results from Cox and accelerated failure time models. We are able to characterize the times related to the buying behavior for both products through several covariates. Our results indicate that the policyholder age, the place of residence, the contract premium, the number of contracts held, and the initial access channel used for contracting influence the duration to cross-selling. In particular, our results underline the importance of the tied agent channel and the differences along the geographic region and the urbanicity of the place of residence. By quantifying the effects of the above factors, we extend the understanding of customer behavior and provide a basis for developing models to time marketing actions in insurance companies.

Suggested Citation

  • Yves Staudt & Joël Wagner, 2022. "Factors Driving Duration to Cross-Selling in Non-Life Insurance: New Empirical Evidence from Switzerland," Risks, MDPI, vol. 10(10), pages 1-20, September.
  • Handle: RePEc:gam:jrisks:v:10:y:2022:i:10:p:187-:d:927054
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/10/10/187/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/10/10/187/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dipak C. Jain & Naufel J. Vilcassim, 1991. "Investigating Household Purchase Timing Decisions: A Conditional Hazard Function Approach," Marketing Science, INFORMS, vol. 10(1), pages 1-23.
    2. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2014. "Nonlife ratemaking and risk management with Bayesian generalized additive models for location, scale, and shape," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 225-249.
    3. Martin Eling & Dieter Kiesenbauer, 2014. "What Policy Features Determine Life Insurance Lapse? An Analysis of the German Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 81(2), pages 241-269, June.
    4. Denuit, Michel & Lang, Stefan, 2004. "Non-life rate-making with Bayesian GAMs," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 627-647, December.
    5. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2014. "Nonlife ratemaking and risk management with Bayesian generalized additive models for location, scale, and shape," LIDAM Reprints ISBA 2014006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aivars Spilbergs & Andris Fomins & Māris Krastiņš, 2022. "Multivariate Modelling of Motor Third Party Liability Insurance Claims," European Journal of Business Science and Technology, Mendel University in Brno, Faculty of Business and Economics, vol. 8(1), pages 5-18.
    2. Devriendt, Sander & Antonio, Katrien & Reynkens, Tom & Verbelen, Roel, 2021. "Sparse regression with Multi-type Regularized Feature modeling," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 248-261.
    3. Yves Staudt & Joël Wagner, 2021. "Assessing the Performance of Random Forests for Modeling Claim Severity in Collision Car Insurance," Risks, MDPI, vol. 9(3), pages 1-28, March.
    4. Sarra Ghaddab & Manel Kacem & Christian Peretti & Lotfi Belkacem, 2023. "Extreme severity modeling using a GLM-GPD combination: application to an excess of loss reinsurance treaty," Empirical Economics, Springer, vol. 65(3), pages 1105-1127, September.
    5. Christopher Blier-Wong & Hélène Cossette & Luc Lamontagne & Etienne Marceau, 2020. "Machine Learning in P&C Insurance: A Review for Pricing and Reserving," Risks, MDPI, vol. 9(1), pages 1-26, December.
    6. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2023. "Empirical risk assessment of maintenance costs under full-service contracts," European Journal of Operational Research, Elsevier, vol. 304(2), pages 476-493.
    7. Denuit, Michel & Legrand, Catherine, 2016. "Risk Classification in Life Insurance: Extension to Continuous Covariates," LIDAM Discussion Papers ISBA 2016045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Shengkun Xie & Anna T. Lawniczak, 2018. "Estimating Major Risk Factor Relativities in Rate Filings Using Generalized Linear Models," IJFS, MDPI, vol. 6(4), pages 1-14, October.
    9. George Tzougas, 2020. "EM Estimation for the Poisson-Inverse Gamma Regression Model with Varying Dispersion: An Application to Insurance Ratemaking," Risks, MDPI, vol. 8(3), pages 1-23, September.
    10. Tzougas, George, 2020. "EM estimation for the Poisson-Inverse Gamma regression model with varying dispersion: an application to insurance ratemaking," LSE Research Online Documents on Economics 106539, London School of Economics and Political Science, LSE Library.
    11. Tzougas, George & Yik, Woo Hee & Mustaqeem, Muhammad Waqar, 2019. "Insurance ratemaking using the Exponential-Lognormal regression model," LSE Research Online Documents on Economics 101729, London School of Economics and Political Science, LSE Library.
    12. Tzougas, George & Vrontos, Spyridon D. & Frangos, Nickolaos E., 2015. "Risk classification for claim counts and losses using regression models for location, scale and shape," LSE Research Online Documents on Economics 70921, London School of Economics and Political Science, LSE Library.
    13. Nadja Klein & Thomas Kneib & Stefan Lang, 2015. "Bayesian Generalized Additive Models for Location, Scale, and Shape for Zero-Inflated and Overdispersed Count Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 405-419, March.
    14. Cadena, Meitner & Denuit, Michel, 2016. "Semi-parametric accelerated hazard relational models with applications to mortality projections," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 1-16.
    15. Mihaela Covrig & Iulian Mircea & Gheorghita Zbaganu & Alexandru Coser & Alexandru Tindeche, 2015. "Using R In Generalized Linear Models," Romanian Statistical Review, Romanian Statistical Review, vol. 63(3), pages 33-45, September.
    16. Alexander Sohn, 2015. "Beyond Conventional Wage Discrimination Analysis: Assessing Comprehensive Wage Distributions of Males and Females Using Structured Additive Distributional Regression," SOEPpapers on Multidisciplinary Panel Data Research 802, DIW Berlin, The German Socio-Economic Panel (SOEP).
    17. Fuzi, Mohd Fadzli Mohd & Jemain, Abdul Aziz & Ismail, Noriszura, 2016. "Bayesian quantile regression model for claim count data," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 124-137.
    18. Denuit, Michel M. & Mesfioui, Mhamed, 2017. "Bounds on Kendall’s tau for zero-inflated continuous variables," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 173-178.
    19. Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2018. "Unravelling the predictive power of telematics data in car insurance pricing," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1275-1304, November.
    20. Sohn, Alexander & Klein, Nadja & Kneib, Thomas, 2014. "A new semiparamtetric approach to analysing Conditional Income Distributions," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100630, Verein für Socialpolitik / German Economic Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:10:y:2022:i:10:p:187-:d:927054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.