IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v303y2022i2p567-580.html
   My bibliography  Save this article

Recoverable robust representatives selection problems with discrete budgeted uncertainty

Author

Listed:
  • Goerigk, Marc
  • Lendl, Stefan
  • Wulf, Lasse

Abstract

Recoverable robust optimization is a multi-stage approach, in which it is possible to adjust a first-stage solution after the uncertain cost scenario is revealed. We analyze this approach for a class of selection problems. The aim is to choose a fixed number of items from several disjoint sets, such that the worst-case costs after taking a recovery action are as small as possible. The uncertainty is modeled as a discrete budgeted set, where the adversary can increase the costs of a fixed number of items. While special cases of this problem have been studied before, its complexity has remained open. In this work we make several contributions towards closing this gap. We show that the problem is NP-hard and identify a special case that remains solvable in polynomial time. We provide a compact mixed-integer programming formulation and two additional extended formulations. Finally, computational results are provided that compare the efficiency of different exact solution approaches.

Suggested Citation

  • Goerigk, Marc & Lendl, Stefan & Wulf, Lasse, 2022. "Recoverable robust representatives selection problems with discrete budgeted uncertainty," European Journal of Operational Research, Elsevier, vol. 303(2), pages 567-580.
  • Handle: RePEc:eee:ejores:v:303:y:2022:i:2:p:567-580
    DOI: 10.1016/j.ejor.2022.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722001771
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zio, E. & Bazzo, R., 2011. "A clustering procedure for reducing the number of representative solutions in the Pareto Front of multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 210(3), pages 624-634, May.
    2. Chassein, André & Goerigk, Marc & Kasperski, Adam & Zieliński, Paweł, 2018. "On recoverable and two-stage robust selection problems with budgeted uncertainty," European Journal of Operational Research, Elsevier, vol. 265(2), pages 423-436.
    3. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    4. Gorissen, Bram L. & Yanıkoğlu, İhsan & den Hertog, Dick, 2015. "A practical guide to robust optimization," Omega, Elsevier, vol. 53(C), pages 124-137.
    5. Adam Kasperski & Paweł Zieliński, 2016. "Robust Discrete Optimization Under Discrete and Interval Uncertainty: A Survey," International Series in Operations Research & Management Science, in: Michael Doumpos & Constantin Zopounidis & Evangelos Grigoroudis (ed.), Robustness Analysis in Decision Aiding, Optimization, and Analytics, chapter 0, pages 113-143, Springer.
    6. Mikita Hradovich & Adam Kasperski & Paweł Zieliński, 2017. "Recoverable robust spanning tree problem under interval uncertainty representations," Journal of Combinatorial Optimization, Springer, vol. 34(2), pages 554-573, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc Goerigk & Adam Kasperski & Paweł Zieliński, 2022. "Robust two-stage combinatorial optimization problems under convex second-stage cost uncertainty," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 497-527, April.
    2. Bomze, Immanuel M. & Gabl, Markus, 2023. "Optimization under uncertainty and risk: Quadratic and copositive approaches," European Journal of Operational Research, Elsevier, vol. 310(2), pages 449-476.
    3. Hradovich, Mikita & Kasperski, Adam & Zieliński, Paweł, 2019. "Robust recoverable 0–1 optimization problems under polyhedral uncertainty," European Journal of Operational Research, Elsevier, vol. 278(1), pages 136-148.
    4. Perraudat, Antoine & Dauzère-Pérès, Stéphane & Vialletelle, Philippe, 2022. "Robust tactical qualification decisions in flexible manufacturing systems," Omega, Elsevier, vol. 106(C).
    5. Baak, Werner & Goerigk, Marc & Hartisch, Michael, 2024. "A preference elicitation approach for the ordered weighted averaging criterion using solution choice observations," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1098-1110.
    6. Shin, Youngchul & Lee, Sangyoon & Moon, Ilkyeong, 2021. "Robust multiperiod inventory model with a new type of buy one get one promotion: “My Own Refrigerator”," Omega, Elsevier, vol. 99(C).
    7. Immanuel Bomze & Markus Gabl, 2021. "Interplay of non-convex quadratically constrained problems with adjustable robust optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 115-151, February.
    8. Yanıkoğlu, İhsan & Yavuz, Tonguc, 2022. "Branch-and-price approach for robust parallel machine scheduling with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 301(3), pages 875-895.
    9. Goerigk, Marc & Khosravi, Mohammad, 2023. "Optimal scenario reduction for one- and two-stage robust optimization with discrete uncertainty in the objective," European Journal of Operational Research, Elsevier, vol. 310(2), pages 529-551.
    10. Marcio Costa Santos & Agostinho Agra & Michael Poss, 2020. "Robust inventory theory with perishable products," Annals of Operations Research, Springer, vol. 289(2), pages 473-494, June.
    11. Balcik, Burcu & Yanıkoğlu, İhsan, 2020. "A robust optimization approach for humanitarian needs assessment planning under travel time uncertainty," European Journal of Operational Research, Elsevier, vol. 282(1), pages 40-57.
    12. Marc Goerigk & Adam Kasperski & Paweł Zieliński, 2021. "Combinatorial two-stage minmax regret problems under interval uncertainty," Annals of Operations Research, Springer, vol. 300(1), pages 23-50, May.
    13. Goerigk, Marc & Lendl, Stefan & Wulf, Lasse, 2022. "Two-Stage robust optimization problems with two-stage uncertainty," European Journal of Operational Research, Elsevier, vol. 302(1), pages 62-78.
    14. Angelos Georghiou & Angelos Tsoukalas & Wolfram Wiesemann, 2020. "A Primal–Dual Lifting Scheme for Two-Stage Robust Optimization," Operations Research, INFORMS, vol. 68(2), pages 572-590, March.
    15. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    16. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    17. Baringo, Luis & Boffino, Luigi & Oggioni, Giorgia, 2020. "Robust expansion planning of a distribution system with electric vehicles, storage and renewable units," Applied Energy, Elsevier, vol. 265(C).
    18. Da Li & Shijie Zhang & Yunhan Xiao, 2020. "Interval Optimization-Based Optimal Design of Distributed Energy Resource Systems under Uncertainties," Energies, MDPI, vol. 13(13), pages 1-18, July.
    19. Calafiore, Giuseppe Carlo & Parino, Francesco & Zino, Lorenzo & Rizzo, Alessandro, 2023. "Dynamic planning of a two-dose vaccination campaign with uncertain supplies," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1269-1278.
    20. Chassein, André & Goerigk, Marc, 2018. "Compromise solutions for robust combinatorial optimization with variable-sized uncertainty," European Journal of Operational Research, Elsevier, vol. 269(2), pages 544-555.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:303:y:2022:i:2:p:567-580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.