IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v300y2021i1d10.1007_s10479-020-03863-7.html
   My bibliography  Save this article

Combinatorial two-stage minmax regret problems under interval uncertainty

Author

Listed:
  • Marc Goerigk

    (University of Siegen)

  • Adam Kasperski

    (Wrocław University of Science and Technology)

  • Paweł Zieliński

    (Wrocław University of Science and Technology)

Abstract

In this paper a class of combinatorial optimization problems is discussed. It is assumed that a feasible solution can be constructed in two stages. In the first stage the objective function costs are known while in the second stage they are uncertain and belong to an interval uncertainty set. In order to choose a solution, the minmax regret criterion is used. Some general properties of the problem are established and results for two particular problems, namely the shortest path and the selection problem, are shown.

Suggested Citation

  • Marc Goerigk & Adam Kasperski & Paweł Zieliński, 2021. "Combinatorial two-stage minmax regret problems under interval uncertainty," Annals of Operations Research, Springer, vol. 300(1), pages 23-50, May.
  • Handle: RePEc:spr:annopr:v:300:y:2021:i:1:d:10.1007_s10479-020-03863-7
    DOI: 10.1007/s10479-020-03863-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03863-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03863-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chassein, André B. & Goerigk, Marc, 2015. "A new bound for the midpoint solution in minmax regret optimization with an application to the robust shortest path problem," European Journal of Operational Research, Elsevier, vol. 244(3), pages 739-747.
    2. Peter Kall & János Mayer, 2005. "Stochastic Linear Programming," International Series in Operations Research and Management Science, Springer, number 978-0-387-24440-2, April.
    3. Adam Kasperski & Paweł Zieliński, 2016. "Robust Discrete Optimization Under Discrete and Interval Uncertainty: A Survey," International Series in Operations Research & Management Science, in: Michael Doumpos & Constantin Zopounidis & Evangelos Grigoroudis (ed.), Robustness Analysis in Decision Aiding, Optimization, and Analytics, chapter 0, pages 113-143, Springer.
    4. Chassein, André & Goerigk, Marc & Kasperski, Adam & Zieliński, Paweł, 2018. "On recoverable and two-stage robust selection problems with budgeted uncertainty," European Journal of Operational Research, Elsevier, vol. 265(2), pages 423-436.
    5. Montemanni, Roberto, 2006. "A Benders decomposition approach for the robust spanning tree problem with interval data," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1479-1490, November.
    6. Montemanni, R. & Gambardella, L. M., 2005. "A branch and bound algorithm for the robust spanning tree problem with interval data," European Journal of Operational Research, Elsevier, vol. 161(3), pages 771-779, March.
    7. Alejandro Crema, 2020. "Min max min robust (relative) regret combinatorial optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(2), pages 249-283, October.
    8. Jordi Pereira & Igor Averbakh, 2013. "The Robust Set Covering Problem with interval data," Annals of Operations Research, Springer, vol. 207(1), pages 217-235, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alireza Amirteimoori & Simin Masrouri, 2021. "DEA-based competition strategy in the presence of undesirable products: An application to paper mills," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(2), pages 5-21.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alireza Amirteimoori & Simin Masrouri, 2021. "DEA-based competition strategy in the presence of undesirable products: An application to paper mills," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(2), pages 5-21.
    2. Wei Wu & Manuel Iori & Silvano Martello & Mutsunori Yagiura, 2022. "An Iterated Dual Substitution Approach for Binary Integer Programming Problems Under the Min-Max Regret Criterion," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2523-2539, September.
    3. Baak, Werner & Goerigk, Marc & Hartisch, Michael, 2024. "A preference elicitation approach for the ordered weighted averaging criterion using solution choice observations," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1098-1110.
    4. Chen, Xujin & Hu, Jie & Hu, Xiaodong, 2009. "A polynomial solvable minimum risk spanning tree problem with interval data," European Journal of Operational Research, Elsevier, vol. 198(1), pages 43-46, October.
    5. Conde, Eduardo & Candia, Alfredo, 2007. "Minimax regret spanning arborescences under uncertain costs," European Journal of Operational Research, Elsevier, vol. 182(2), pages 561-577, October.
    6. Mohammad Javad Feizollahi & Igor Averbakh, 2014. "The Robust (Minmax Regret) Quadratic Assignment Problem with Interval Flows," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 321-335, May.
    7. Conde, Eduardo, 2012. "On a constant factor approximation for minmax regret problems using a symmetry point scenario," European Journal of Operational Research, Elsevier, vol. 219(2), pages 452-457.
    8. Büsing, Christina & Comis, Martin & Schmidt, Eva & Streicher, Manuel, 2021. "Robust strategic planning for mobile medical units with steerable and unsteerable demands," European Journal of Operational Research, Elsevier, vol. 295(1), pages 34-50.
    9. Goerigk, Marc & Lendl, Stefan & Wulf, Lasse, 2022. "Recoverable robust representatives selection problems with discrete budgeted uncertainty," European Journal of Operational Research, Elsevier, vol. 303(2), pages 567-580.
    10. Amadeu A. Coco & Andréa Cynthia Santos & Thiago F. Noronha, 2022. "Robust min-max regret covering problems," Computational Optimization and Applications, Springer, vol. 83(1), pages 111-141, September.
    11. Goerigk, Marc & Lendl, Stefan & Wulf, Lasse, 2022. "Two-Stage robust optimization problems with two-stage uncertainty," European Journal of Operational Research, Elsevier, vol. 302(1), pages 62-78.
    12. Aissi, Hassene & Bazgan, Cristina & Vanderpooten, Daniel, 2009. "Min-max and min-max regret versions of combinatorial optimization problems: A survey," European Journal of Operational Research, Elsevier, vol. 197(2), pages 427-438, September.
    13. Chassein, André & Dokka, Trivikram & Goerigk, Marc, 2019. "Algorithms and uncertainty sets for data-driven robust shortest path problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 671-686.
    14. Lee, Jisun & Joung, Seulgi & Lee, Kyungsik, 2022. "A fully polynomial time approximation scheme for the probability maximizing shortest path problem," European Journal of Operational Research, Elsevier, vol. 300(1), pages 35-45.
    15. Moretti, S. & Alparslan-Gok, S.Z. & Brânzei, R. & Tijs, S.H., 2008. "Connection Situations under Uncertainty," Other publications TiSEM e9771ffd-ce59-4b8d-a2c8-d, Tilburg University, School of Economics and Management.
    16. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    17. Goerigk, Marc & Knust, Sigrid & Le, Xuan Thanh, 2016. "Robust storage loading problems with stacking and payload constraints," European Journal of Operational Research, Elsevier, vol. 253(1), pages 51-67.
    18. Peter Kall & János Mayer, 2006. "Some insights into the solution algorithms for SLP problems," Annals of Operations Research, Springer, vol. 142(1), pages 147-164, February.
    19. Beltran-Royo, C., 2017. "Two-stage stochastic mixed-integer linear programming: The conditional scenario approach," Omega, Elsevier, vol. 70(C), pages 31-42.
    20. Gök Sırma Zeynep Alparslan & Rodica Branzei & Stef Tijs, 2009. "Airport interval games and their Shapley value," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 19(2), pages 9-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:300:y:2021:i:1:d:10.1007_s10479-020-03863-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.