IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v43y2022i3d10.1007_s10878-021-00776-4.html
   My bibliography  Save this article

Robust two-stage combinatorial optimization problems under convex second-stage cost uncertainty

Author

Listed:
  • Marc Goerigk

    (University of Siegen)

  • Adam Kasperski

    (Wrocław University of Science and Technology)

  • Paweł Zieliński

    (Wrocław University of Science and Technology)

Abstract

In this paper a class of robust two-stage combinatorial optimization problems is discussed. It is assumed that the uncertain second-stage costs are specified in the form of a convex uncertainty set, in particular polyhedral or ellipsoidal ones. It is shown that the robust two-stage versions of basic network optimization and selection problems are NP-hard, even in a very restrictive cases. Some exact and approximation algorithms for the general problem are constructed. Polynomial and approximation algorithms for the robust two-stage versions of basic problems, such as the selection and shortest path problems, are also provided.

Suggested Citation

  • Marc Goerigk & Adam Kasperski & Paweł Zieliński, 2022. "Robust two-stage combinatorial optimization problems under convex second-stage cost uncertainty," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 497-527, April.
  • Handle: RePEc:spr:jcomop:v:43:y:2022:i:3:d:10.1007_s10878-021-00776-4
    DOI: 10.1007/s10878-021-00776-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-021-00776-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-021-00776-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Artur Alves Pessoa & Michael Poss & Ruslan Sadykov & François Vanderbeck, 2021. "Branch-Cut-and-Price for the Robust Capacitated Vehicle Routing Problem with Knapsack Uncertainty," Operations Research, INFORMS, vol. 69(3), pages 739-754, May.
    2. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    3. Marc Goerigk & Adam Kasperski & Paweł Zieliński, 2020. "Solving Robust Two-Stage Combinatorial Optimization Problems Under Convex Uncertainty," Operations Research Proceedings, in: Janis S. Neufeld & Udo Buscher & Rainer Lasch & Dominik Möst & Jörn Schönberger (ed.), Operations Research Proceedings 2019, pages 423-429, Springer.
    4. Chassein, André & Goerigk, Marc & Kasperski, Adam & Zieliński, Paweł, 2018. "On recoverable and two-stage robust selection problems with budgeted uncertainty," European Journal of Operational Research, Elsevier, vol. 265(2), pages 423-436.
    5. Christoph Buchheim & Jannis Kurtz, 2018. "Robust combinatorial optimization under convex and discrete cost uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 211-238, September.
    6. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    7. Amir Ardestani-Jaafari & Erick Delage, 2016. "Robust Optimization of Sums of Piecewise Linear Functions with Application to Inventory Problems," Operations Research, INFORMS, vol. 64(2), pages 474-494, April.
    8. Grani A. Hanasusanto & Daniel Kuhn & Wolfram Wiesemann, 2015. "K -Adaptability in Two-Stage Robust Binary Programming," Operations Research, INFORMS, vol. 63(4), pages 877-891, August.
    9. Aissi, Hassene & Bazgan, Cristina & Vanderpooten, Daniel, 2009. "Min-max and min-max regret versions of combinatorial optimization problems: A survey," European Journal of Operational Research, Elsevier, vol. 197(2), pages 427-438, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Detienne, Boris & Lefebvre, Henri & Malaguti, Enrico & Monaci, Michele, 2024. "Adjustable robust optimization with objective uncertainty," European Journal of Operational Research, Elsevier, vol. 312(1), pages 373-384.
    2. Cohen, Izack & Postek, Krzysztof & Shtern, Shimrit, 2023. "An adaptive robust optimization model for parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 306(1), pages 83-104.
    3. Feng, Wei & Feng, Yiping & Zhang, Qi, 2021. "Multistage robust mixed-integer optimization under endogenous uncertainty," European Journal of Operational Research, Elsevier, vol. 294(2), pages 460-475.
    4. Marin Bougeret & Jérémy Omer & Michael Poss, 2023. "Optimization Problems in Graphs with Locational Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 578-592, May.
    5. Jannis Kurtz, 2018. "Robust combinatorial optimization under budgeted–ellipsoidal uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 315-337, December.
    6. Chassein, André & Goerigk, Marc & Kurtz, Jannis & Poss, Michael, 2019. "Faster algorithms for min-max-min robustness for combinatorial problems with budgeted uncertainty," European Journal of Operational Research, Elsevier, vol. 279(2), pages 308-319.
    7. Nicolas Kämmerling & Jannis Kurtz, 2020. "Oracle-based algorithms for binary two-stage robust optimization," Computational Optimization and Applications, Springer, vol. 77(2), pages 539-569, November.
    8. Letsios, Dimitrios & Mistry, Miten & Misener, Ruth, 2021. "Exact lexicographic scheduling and approximate rescheduling," European Journal of Operational Research, Elsevier, vol. 290(2), pages 469-478.
    9. Angelos Georghiou & Angelos Tsoukalas & Wolfram Wiesemann, 2020. "A Primal–Dual Lifting Scheme for Two-Stage Robust Optimization," Operations Research, INFORMS, vol. 68(2), pages 572-590, March.
    10. Filipe Rodrigues & Agostinho Agra & Cristina Requejo & Erick Delage, 2021. "Lagrangian Duality for Robust Problems with Decomposable Functions: The Case of a Robust Inventory Problem," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 685-705, May.
    11. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    12. Chassein, André & Dokka, Trivikram & Goerigk, Marc, 2019. "Algorithms and uncertainty sets for data-driven robust shortest path problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 671-686.
    13. Baringo, Luis & Boffino, Luigi & Oggioni, Giorgia, 2020. "Robust expansion planning of a distribution system with electric vehicles, storage and renewable units," Applied Energy, Elsevier, vol. 265(C).
    14. Hamed Mamani & Shima Nassiri & Michael R. Wagner, 2017. "Closed-Form Solutions for Robust Inventory Management," Management Science, INFORMS, vol. 63(5), pages 1625-1643, May.
    15. Shi, Ruifeng & Li, Shaopeng & Zhang, Penghui & Lee, Kwang Y., 2020. "Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization," Renewable Energy, Elsevier, vol. 153(C), pages 1067-1080.
    16. Metzker Soares, Paula & Thevenin, Simon & Adulyasak, Yossiri & Dolgui, Alexandre, 2024. "Adaptive robust optimization for lot-sizing under yield uncertainty," European Journal of Operational Research, Elsevier, vol. 313(2), pages 513-526.
    17. Aliakbari Sani, Sajad & Bahn, Olivier & Delage, Erick, 2022. "Affine decision rule approximation to address demand response uncertainty in smart Grids’ capacity planning," European Journal of Operational Research, Elsevier, vol. 303(1), pages 438-455.
    18. Chassein, André & Goerigk, Marc, 2018. "Variable-sized uncertainty and inverse problems in robust optimization," European Journal of Operational Research, Elsevier, vol. 264(1), pages 17-28.
    19. Borumand, Ali & Marandi, Ahmadreza & Nookabadi, Ali S. & Atan, Zümbül, 2024. "An oracle-based algorithm for robust planning of production routing problems in closed-loop supply chains of beverage glass bottles," Omega, Elsevier, vol. 122(C).
    20. Yu, Vincent F. & Anh, Pham Tuan & Baldacci, Roberto, 2023. "A robust optimization approach for the vehicle routing problem with cross-docking under demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:43:y:2022:i:3:d:10.1007_s10878-021-00776-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.