IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v157y2013i2d10.1007_s10957-012-0192-5.html
   My bibliography  Save this article

Managing Dynamic Inventory Systems with Product Returns: A Markov Decision Process

Author

Listed:
  • Xiaoming Li

    (Tennessee State University)

Abstract

This paper presents a Markov decision process for managing inventory systems with Markovian customer demand and Markovian product returns. Employing functional analysis, we prove the existence of the optimal replenishment policies for the discounted-cost and average-cost problems when demand, returns, and cost functions are of polynomial growth. Our model generalizes literature results by integrating Markovian demand, Markovian returns, and positive replenishment lead times. In particular, the optimality of the reorder point, order-up-to policies is proved when the order cost consists of fixed setup and proportional cost components and the inventory surplus cost is convex. We then make model extensions to include different cost components and to differentiate returned products from new ones. Finally, we derive managerial insights for running integrated closed-loop supply chains. At the aggregate level, returns reduce effective demand while many structural characteristics of inventory models are intact. A simple heuristic for managing systems with returns is to still utilize literature results without returns, but effective demand is lower than customer demand.

Suggested Citation

  • Xiaoming Li, 2013. "Managing Dynamic Inventory Systems with Product Returns: A Markov Decision Process," Journal of Optimization Theory and Applications, Springer, vol. 157(2), pages 577-592, May.
  • Handle: RePEc:spr:joptap:v:157:y:2013:i:2:d:10.1007_s10957-012-0192-5
    DOI: 10.1007/s10957-012-0192-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-012-0192-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-012-0192-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suresh P. Sethi & Feng Cheng, 1997. "Optimality of ( s , S ) Policies in Inventory Models with Markovian Demand," Operations Research, INFORMS, vol. 45(6), pages 931-939, December.
    2. Linn I. Sennott, 1989. "Average Cost Optimal Stationary Policies in Infinite State Markov Decision Processes with Unbounded Costs," Operations Research, INFORMS, vol. 37(4), pages 626-633, August.
    3. D. Beyer & S. P. Sethi & M. Taksar, 1998. "Inventory Models with Markovian Demands and Cost Functions of Polynomial Growth," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 281-323, August.
    4. Fleischmann, Moritz & Kuik, Roelof, 2003. "On optimal inventory control with independent stochastic item returns," European Journal of Operational Research, Elsevier, vol. 151(1), pages 25-37, November.
    5. Wongthatsanekorn, Wuthichai & Realff, Matthew J. & Ammons, Jane C., 2010. "Multi-time scale Markov decision process approach to strategic network growth of reverse supply chains," Omega, Elsevier, vol. 38(1-2), pages 20-32, February.
    6. D. Beyer & S. P. Sethi, 1997. "Average Cost Optimality in Inventory Models with Markovian Demands," Journal of Optimization Theory and Applications, Springer, vol. 92(3), pages 497-526, March.
    7. Jing-Sheng Song & Paul Zipkin, 1993. "Inventory Control in a Fluctuating Demand Environment," Operations Research, INFORMS, vol. 41(2), pages 351-370, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoming Li, 2015. "Optimal Policies and Bounds for Stochastic Inventory Systems with Lost Sales," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 359-375, January.
    2. Lamballais, T. & Merschformann, M. & Roy, D. & de Koster, M.B.M. & Azadeh, K. & Suhl, L., 2022. "Dynamic policies for resource reallocation in a robotic mobile fulfillment system with time-varying demand," European Journal of Operational Research, Elsevier, vol. 300(3), pages 937-952.
    3. Jianqiang Hu & Cheng Zhang & Chenbo Zhu, 2016. "( s , S ) Inventory Systems with Correlated Demands," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 603-611, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang, Mengyuan & Rossi, Roberto & Martin-Barragan, Belen & Tarim, S. Armagan, 2023. "A mathematical programming-based solution method for the nonstationary inventory problem under correlated demand," European Journal of Operational Research, Elsevier, vol. 304(2), pages 515-524.
    2. Manafzadeh Dizbin, Nima & Tan, Barış, 2020. "Optimal control of production-inventory systems with correlated demand inter-arrival and processing times," International Journal of Production Economics, Elsevier, vol. 228(C).
    3. Feng Cheng & Suresh P. Sethi, 1999. "A Periodic Review Inventory Model with Demand Influenced by Promotion Decisions," Management Science, INFORMS, vol. 45(11), pages 1510-1523, November.
    4. Jianqiang Hu & Cheng Zhang & Chenbo Zhu, 2016. "( s , S ) Inventory Systems with Correlated Demands," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 603-611, November.
    5. Xiuli Chao & Xiting Gong & Cong Shi & Chaolin Yang & Huanan Zhang & Sean X. Zhou, 2018. "Approximation Algorithms for Capacitated Perishable Inventory Systems with Positive Lead Times," Management Science, INFORMS, vol. 64(11), pages 5038-5061, November.
    6. Jean-Philippe Gayon & Isilay Talay-Degirmenci & F. Karaesmen & L. Örmeci, 2009. "Optimal Pricing and Production Policies of a Make-to-Stock System with Fluctuating Demand," Post-Print hal-00363686, HAL.
    7. D. Beyer & S. P. Sethi & M. Taksar, 1998. "Inventory Models with Markovian Demands and Cost Functions of Polynomial Growth," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 281-323, August.
    8. Sandun C. Perera & Suresh P. Sethi, 2023. "A survey of stochastic inventory models with fixed costs: Optimality of (s, S) and (s, S)‐type policies—Discrete‐time case," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 131-153, January.
    9. Li Chen & Jing-Sheng Song & Yue Zhang, 2017. "Serial Inventory Systems with Markov-Modulated Demand: Derivative Bounds, Asymptotic Analysis, and Insights," Operations Research, INFORMS, vol. 65(5), pages 1231-1249, October.
    10. Yin, Rui & Rajaram, Kumar, 2007. "Joint pricing and inventory control with a Markovian demand model," European Journal of Operational Research, Elsevier, vol. 182(1), pages 113-126, October.
    11. Erhan Bayraktar & Michael Ludkovski, 2010. "Inventory management with partially observed nonstationary demand," Annals of Operations Research, Springer, vol. 176(1), pages 7-39, April.
    12. Sandun C. Perera & Suresh P. Sethi, 2023. "A survey of stochastic inventory models with fixed costs: Optimality of (s, S) and (s, S)‐type policies—Continuous‐time case," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 154-169, January.
    13. D. Beyer & S. P. Sethi, 1999. "The Classical Average-Cost Inventory Models of Iglehart and Veinott–Wagner Revisited," Journal of Optimization Theory and Applications, Springer, vol. 101(3), pages 523-555, June.
    14. Gen Sakoda & Hideki Takayasu & Misako Takayasu, 2019. "Data Science Solutions for Retail Strategy to Reduce Waste Keeping High Profit," Sustainability, MDPI, vol. 11(13), pages 1-30, June.
    15. Alain Bensoussan & Lama Moussawi-Haidar & Metin Çakanyıldırım, 2010. "Inventory control with an order-time constraint: optimality, uniqueness and significance," Annals of Operations Research, Springer, vol. 181(1), pages 603-640, December.
    16. Pirayesh Neghab, Davood & Khayyati, Siamak & Karaesmen, Fikri, 2022. "An integrated data-driven method using deep learning for a newsvendor problem with unobservable features," European Journal of Operational Research, Elsevier, vol. 302(2), pages 482-496.
    17. Hong-Qiao Chen & Xiao-Song Ding & Ji-Hong Zhang & Hua-Yi Li, 2020. "Optimal Production-Inventory Policy for a Periodic-Review Energy Buy-Back System over an Infinite Planning Horizon," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(02), pages 1-32, March.
    18. Alp Muharremoglu & John N. Tsitsiklis, 2008. "A Single-Unit Decomposition Approach to Multiechelon Inventory Systems," Operations Research, INFORMS, vol. 56(5), pages 1089-1103, October.
    19. Fangruo Chen & Jing-Sheng Song, 2001. "Optimal Policies for Multiechelon Inventory Problems with Markov-Modulated Demand," Operations Research, INFORMS, vol. 49(2), pages 226-234, April.
    20. Suresh P. Sethi & Houmin Yan & Hanqin Zhang, 2003. "Inventory Models with Fixed Costs, Forecast Updates, and Two Delivery Modes," Operations Research, INFORMS, vol. 51(2), pages 321-328, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:157:y:2013:i:2:d:10.1007_s10957-012-0192-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.