IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v39y2011i4p410-415.html
   My bibliography  Save this article

The cost of using stationary inventory policies when demand is non-stationary

Author

Listed:
  • Tunc, Huseyin
  • Kilic, Onur A.
  • Tarim, S. Armagan
  • Eksioglu, Burak

Abstract

Non-stationary stochastic demands are very common in industrial settings with seasonal patterns, trends, business cycles, and limited-life items. In such cases, the optimal inventory control policies are also non-stationary. However, due to high computational complexity, non-stationary inventory policies are not usually preferred in real-life applications. In this paper, we investigate the cost of using a stationary policy as an approximation to the optimal non-stationary one. Our numerical study points to two important results: (i) Using stationary policies can be very expensive depending on the magnitude of demand variability. (ii) Stationary policies may be efficient approximations to optimal non-stationary policies when demand information contains high uncertainty, setup costs are high and penalty costs are low.

Suggested Citation

  • Tunc, Huseyin & Kilic, Onur A. & Tarim, S. Armagan & Eksioglu, Burak, 2011. "The cost of using stationary inventory policies when demand is non-stationary," Omega, Elsevier, vol. 39(4), pages 410-415, August.
  • Handle: RePEc:eee:jomega:v:39:y:2011:i:4:p:410-415
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(10)00121-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Samuel Karlin, 1960. "Dynamic Inventory Policy with Varying Stochastic Demands," Management Science, INFORMS, vol. 6(3), pages 231-258, April.
    2. Awi Federgruen & Paul Zipkin, 1984. "An Efficient Algorithm for Computing Optimal ( s , S ) Policies," Operations Research, INFORMS, vol. 32(6), pages 1268-1285, December.
    3. Shaler Stidham, 1977. "Cost Models for Stochastic Clearing Systems," Operations Research, INFORMS, vol. 25(1), pages 100-127, February.
    4. Donald L. Iglehart, 1963. "Optimality of (s, S) Policies in the Infinite Horizon Dynamic Inventory Problem," Management Science, INFORMS, vol. 9(2), pages 259-267, January.
    5. Yue, Jinfeng & Xia, Yu & Tran, Thuhang, 2010. "Selecting sourcing partners for a make-to-order supply chain," Omega, Elsevier, vol. 38(3-4), pages 136-144, June.
    6. Mohebbi, E. & Choobineh, F., 2005. "The impact of component commonality in an assemble-to-order environment under supply and demand uncertainty," Omega, Elsevier, vol. 33(6), pages 472-482, December.
    7. Stephen C. Graves & Sean P. Willems, 2008. "Strategic Inventory Placement in Supply Chains: Nonstationary Demand," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 278-287, March.
    8. Blyth C. Archibald & Edward A. Silver, 1978. "(s, S) Policies Under Continuous Review and Discrete Compound Poisson Demand," Management Science, INFORMS, vol. 24(9), pages 899-909, May.
    9. Arthur F. Veinott, Jr. & Harvey M. Wagner, 1965. "Computing Optimal (s, S) Inventory Policies," Management Science, INFORMS, vol. 11(5), pages 525-552, March.
    10. Wang, Kung-Jeng & Wee, Hui-Ming & Gao, Shin-Feng & Chung, Shen-Lian, 2005. "Production and inventory control with chaotic demands," Omega, Elsevier, vol. 33(2), pages 97-106, April.
    11. Abbas A. Kurawarwala & Hirofumi Matsuo, 1996. "Forecasting and Inventory Management of Short Life-Cycle Products," Operations Research, INFORMS, vol. 44(1), pages 131-150, February.
    12. Izzet Sahin, 1982. "On the Objective Function Behavior in ( s , S ) Inventory Models," Operations Research, INFORMS, vol. 30(4), pages 709-724, August.
    13. Yu-Sheng Zheng & A. Federgruen, 1991. "Finding Optimal (s, S) Policies Is About As Simple As Evaluating a Single Policy," Operations Research, INFORMS, vol. 39(4), pages 654-665, August.
    14. Tarim, S. Armagan & Kingsman, Brian G., 2006. "Modelling and computing (Rn, Sn) policies for inventory systems with non-stationary stochastic demand," European Journal of Operational Research, Elsevier, vol. 174(1), pages 581-599, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kshitija Taywade & Brent Harrison & Judy Goldsmith, 2022. "Using Non-Stationary Bandits for Learning in Repeated Cournot Games with Non-Stationary Demand," Papers 2201.00486, arXiv.org.
    2. Tempelmeier, Horst, 2011. "A column generation heuristic for dynamic capacitated lot sizing with random demand under a fill rate constraint," Omega, Elsevier, vol. 39(6), pages 627-633, December.
    3. Özen, Ulaş & Doğru, Mustafa K. & Armagan Tarim, S., 2012. "Static-dynamic uncertainty strategy for a single-item stochastic inventory control problem," Omega, Elsevier, vol. 40(3), pages 348-357.
    4. Ehrenthal, J.C.F. & Honhon, D. & Van Woensel, T., 2014. "Demand seasonality in retail inventory management," European Journal of Operational Research, Elsevier, vol. 238(2), pages 527-539.
    5. Yi Zheng & Zehao Li & Peng Jiang & Yijie Peng, 2024. "Dual-Agent Deep Reinforcement Learning for Dynamic Pricing and Replenishment," Papers 2410.21109, arXiv.org.
    6. Rostami-Tabar, Bahman & Babai, Mohamed Zied & Ducq, Yves & Syntetos, Aris, 2015. "Non-stationary demand forecasting by cross-sectional aggregation," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 297-309.
    7. Yonit Barron & Dror Hermel, 2017. "Shortage decision policies for a fluid production model with MAP arrivals," International Journal of Production Research, Taylor & Francis Journals, vol. 55(14), pages 3946-3969, July.
    8. Lamballais, T. & Merschformann, M. & Roy, D. & de Koster, M.B.M. & Azadeh, K. & Suhl, L., 2022. "Dynamic policies for resource reallocation in a robotic mobile fulfillment system with time-varying demand," European Journal of Operational Research, Elsevier, vol. 300(3), pages 937-952.
    9. Kreye, M.E. & Goh, Y.M. & Newnes, L.B. & Goodwin, P., 2012. "Approaches to displaying information to assist decisions under uncertainty," Omega, Elsevier, vol. 40(6), pages 682-692.
    10. Banerjee, Pradeep K. & Turner, T. Rolf, 2012. "A flexible model for the pricing of perishable assets," Omega, Elsevier, vol. 40(5), pages 533-540.
    11. Lagodimos, A.G. & Christou, I.T. & Skouri, K., 2012. "Computing globally optimal (s,S,T) inventory policies," Omega, Elsevier, vol. 40(5), pages 660-671.
    12. Pauls-Worm, Karin G.J. & Hendrix, Eligius M.T. & Alcoba, Alejandro G. & Haijema, René, 2016. "Order quantities for perishable inventory control with non-stationary demand and a fill rate constraint," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 238-246.
    13. Kevin Geevers & Lotte Hezewijk & Martijn R. K. Mes, 2024. "Multi-echelon inventory optimization using deep reinforcement learning," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(3), pages 653-683, September.
    14. Kartikeya Puranam & David C. Novak & Marilyn Lucas, 2022. "Extending the newsvendor model to account for uncontrolled inventory transfers," Annals of Operations Research, Springer, vol. 317(1), pages 213-226, October.
    15. Pauls-Worm, Karin G.J. & Hendrix, Eligius M.T. & Haijema, René & van der Vorst, Jack G.A.J., 2014. "An MILP approximation for ordering perishable products with non-stationary demand and service level constraints," International Journal of Production Economics, Elsevier, vol. 157(C), pages 133-146.
    16. Nasr, Walid W. & Elshar, Ibrahim J., 2018. "Continuous inventory control with stochastic and non-stationary Markovian demand," European Journal of Operational Research, Elsevier, vol. 270(1), pages 198-217.
    17. Dhingra, Vibhuti & Kumawat, Govind Lal & Roy, Debjit & Koster, René de, 2018. "Solving semi-open queuing networks with time-varying arrivals: An application in container terminal landside operations," European Journal of Operational Research, Elsevier, vol. 267(3), pages 855-876.
    18. Yang, Liu & Li, Haitao & Campbell, James F. & Sweeney, Donald C., 2017. "Integrated multi-period dynamic inventory classification and control," International Journal of Production Economics, Elsevier, vol. 189(C), pages 86-96.
    19. Ren, Ke & Bidkhori, Hoda & Shen, Zuo-Jun Max, 2024. "Data-driven inventory policy: Learning from sequentially observed non-stationary data," Omega, Elsevier, vol. 123(C).
    20. Dural-Selcuk, Gozdem & Rossi, Roberto & Kilic, Onur A. & Tarim, S. Armagan, 2020. "The benefit of receding horizon control: Near-optimal policies for stochastic inventory control," Omega, Elsevier, vol. 97(C).
    21. Choudhary, Devendra & Shankar, Ravi, 2015. "The value of VMI beyond information sharing in a single supplier multiple retailers supply chain under a non-stationary (Rn, Sn) policy," Omega, Elsevier, vol. 51(C), pages 59-70.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang, Mengyuan & Rossi, Roberto & Martin-Barragan, Belen & Tarim, S. Armagan, 2018. "Computing non-stationary (s, S) policies using mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 271(2), pages 490-500.
    2. Kilic, Onur A. & Tarim, S. Armagan, 2024. "A simple heuristic for computing non-stationary inventory policies based on function approximation," European Journal of Operational Research, Elsevier, vol. 316(3), pages 899-905.
    3. Tarim, S. Armagan & Smith, Barbara M., 2008. "Constraint programming for computing non-stationary (R, S) inventory policies," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1004-1021, September.
    4. Dural-Selcuk, Gozdem & Rossi, Roberto & Kilic, Onur A. & Tarim, S. Armagan, 2020. "The benefit of receding horizon control: Near-optimal policies for stochastic inventory control," Omega, Elsevier, vol. 97(C).
    5. Sandun C. Perera & Suresh P. Sethi, 2023. "A survey of stochastic inventory models with fixed costs: Optimality of (s, S) and (s, S)‐type policies—Discrete‐time case," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 131-153, January.
    6. Sandun C. Perera & Suresh P. Sethi, 2023. "A survey of stochastic inventory models with fixed costs: Optimality of (s, S) and (s, S)‐type policies—Continuous‐time case," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 154-169, January.
    7. B S Maddah & M Y Jaber & N E Abboud, 2004. "Periodic review (s, S) inventory model with permissible delay in payments," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 147-159, February.
    8. Lee, Jun-Yeon & Ren, Louie, 2011. "Vendor-managed inventory in a global environment with exchange rate uncertainty," International Journal of Production Economics, Elsevier, vol. 130(2), pages 169-174, April.
    9. Xie, Xiaolan, 1998. "Stability analysis and optimization of an inventory system with bounded orders," European Journal of Operational Research, Elsevier, vol. 110(1), pages 126-149, October.
    10. Hao Yuan & Qi Luo & Cong Shi, 2021. "Marrying Stochastic Gradient Descent with Bandits: Learning Algorithms for Inventory Systems with Fixed Costs," Management Science, INFORMS, vol. 67(10), pages 6089-6115, October.
    11. Lagodimos, A.G. & Christou, I.T. & Skouri, K., 2012. "Computing globally optimal (s,S,T) inventory policies," Omega, Elsevier, vol. 40(5), pages 660-671.
    12. Tovey C. Bachman & Pamela J. Williams & Kristen M. Cheman & Jeffrey Curtis & Robert Carroll, 2016. "PNG: Effective Inventory Control for Items with Highly Variable Demand," Interfaces, INFORMS, vol. 46(1), pages 18-32, February.
    13. Qi‐Ming He & James H. Bookbinder & Qishu Cai, 2020. "Optimal policies for stochastic clearing systems with time‐dependent delay penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 487-502, October.
    14. Awi Federgruen & Min Wang, 2015. "Inventory Models with Shelf-Age and Delay-Dependent Inventory Costs," Operations Research, INFORMS, vol. 63(3), pages 701-715, June.
    15. Li, Xiaoming, 2010. "Optimal inventory policies in decentralized supply chains," International Journal of Production Economics, Elsevier, vol. 128(1), pages 303-309, November.
    16. Gah-Yi Ban, 2020. "Confidence Intervals for Data-Driven Inventory Policies with Demand Censoring," Operations Research, INFORMS, vol. 68(2), pages 309-326, March.
    17. Luo, Sha & Ahiska, S. Sebnem & Fang, Shu-Cherng & King, Russell E. & Warsing, Donald P. & Wu, Shuohao, 2021. "An analysis of optimal ordering policies for a two-supplier system with disruption risk," Omega, Elsevier, vol. 105(C).
    18. D. Beyer & S. P. Sethi, 1999. "The Classical Average-Cost Inventory Models of Iglehart and Veinott–Wagner Revisited," Journal of Optimization Theory and Applications, Springer, vol. 101(3), pages 523-555, June.
    19. Ehrenthal, J.C.F. & Honhon, D. & Van Woensel, T., 2014. "Demand seasonality in retail inventory management," European Journal of Operational Research, Elsevier, vol. 238(2), pages 527-539.
    20. Chiang, Chi, 2013. "A note on periodic review inventory models with stochastic supplier’s visit intervals and fixed ordering cost," International Journal of Production Economics, Elsevier, vol. 146(2), pages 662-666.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:39:y:2011:i:4:p:410-415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.