IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v288y2021i1p80-97.html
   My bibliography  Save this article

Introducing split orders and optimizing operational policies in robotic mobile fulfillment systems

Author

Listed:
  • Xie, Lin
  • Thieme, Nils
  • Krenzler, Ruslan
  • Li, Hanyi

Abstract

In robotic mobile fulfillment systems, human pickers don’t go to the inventory area to search for and pick the ordered items. Instead, robots carry shelves (called “pods”) containing ordered items from the inventory area to picking stations. At the picking stations, pickers put ordered items into totes; then these items are transported to the packing stations. This type of warehousing system relieves the human pickers and improves the picking process. In this paper, we concentrate on decisions about the assignment of pods to stations and orders to stations to fulfill picking for each incoming customer’s order. In previous research for an RMFS with multiple picking stations, these decisions are made sequentially with heuristics. Instead, we present a new MIP-model to integrate both decision problems. To improve the system performance even more, we extend our model by splitting orders. This means parts of an order are allowed to be picked at different stations. To the best of the authors’ knowledge, this is the first publication on split orders in an RMFS. And we prove the computational complexity of our models. We analyze different performance metrics, such as pile-on, pod-station visits, robot moving distance and throughput. We compare the results of our models in different instances with the sequential method in our open-source simulation framework RAWSim-O. The integration of the decisions brings better performances, and allowing split orders further improves the performances (for example: increasing throughput by 46%). In order to reduce the computational time for a real-world application, we have proposed a heuristic.

Suggested Citation

  • Xie, Lin & Thieme, Nils & Krenzler, Ruslan & Li, Hanyi, 2021. "Introducing split orders and optimizing operational policies in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 288(1), pages 80-97.
  • Handle: RePEc:eee:ejores:v:288:y:2021:i:1:p:80-97
    DOI: 10.1016/j.ejor.2020.05.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720304781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.05.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jingtian Zhang & Fuxing Yang & Xun Weng, 2019. "A Building-Block-Based Genetic Algorithm for Solving the Robots Allocation Problem in a Robotic Mobile Fulfilment System," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-15, February.
    2. Merschformann, M. & Lamballais, T. & de Koster, M.B.M. & Suhl, L., 2019. "Decision rules for robotic mobile fulfillment systems," Operations Research Perspectives, Elsevier, vol. 6(C).
    3. Yavuz A. Bozer & Francisco J. Aldarondo, 2018. "A simulation-based comparison of two goods-to-person order picking systems in an online retail setting," International Journal of Production Research, Taylor & Francis Journals, vol. 56(11), pages 3838-3858, June.
    4. Felix Weidinger & Nils Boysen & Dirk Briskorn, 2018. "Storage Assignment with Rack-Moving Mobile Robots in KIVA Warehouses," Service Science, INFORMS, vol. 52(6), pages 1479-1495, December.
    5. Boysen, Nils & Briskorn, Dirk & Emde, Simon, 2017. "Parts-to-picker based order processing in a rack-moving mobile robots environment," European Journal of Operational Research, Elsevier, vol. 262(2), pages 550-562.
    6. Zou, Bipan & Xu, Xianhao & Gong, Yeming (Yale) & De Koster, René, 2018. "Evaluating battery charging and swapping strategies in a robotic mobile fulfillment system," European Journal of Operational Research, Elsevier, vol. 267(2), pages 733-753.
    7. Lamballais, T. & Roy, D. & De Koster, M.B.M., 2017. "Estimating performance in a Robotic Mobile Fulfillment System," European Journal of Operational Research, Elsevier, vol. 256(3), pages 976-990.
    8. Roy, Debjit & Nigam, Shobhit & de Koster, René & Adan, Ivo & Resing, Jacques, 2019. "Robot-storage zone assignment strategies in mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 119-142.
    9. Zhe Yuan & Yeming Gong, 2017. "Bot-In-Time Delivery for Robotic Mobile Fulfillment Systems," Post-Print hal-02311982, HAL.
    10. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.
    11. Sevilay Onal & Jingran Zhang & Sanchoy Das, 2017. "Modelling and performance evaluation of explosive storage policies in internet fulfilment warehouses," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 5902-5915, October.
    12. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    13. Weidinger, Felix & Boysen, Nils & Briskorn, Dirk, 2018. "Storage Assignment with Rack-Moving Mobile Robots in KIVA Warehouses," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126190, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    14. Boysen, Nils & Briskorn, Dirk & Emde, Simon, 2017. "Parts-to-picker based order processing in a rack-moving mobile robots environment," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 85774, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    15. Azadeh, K. & de Koster, M.B.M. & Roy, D., 2017. "Robotized Warehouse Systems: Developments and Research Opportunities," ERIM Report Series Research in Management ERS-2017-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Bipan Zou & Xianhao Xu & Yeming Gong & René de Koster, 2018. "Evaluating battery charging and swapping strategies in a robotic mobile fulfillment system," Post-Print hal-02312110, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Su, Yixuan & Zhu, Xi & Yuan, Jinlong & Teo, Kok Lay & Li, Meixia & Li, Chunfa, 2023. "An extensible multi-block layout warehouse routing optimization model," European Journal of Operational Research, Elsevier, vol. 305(1), pages 222-239.
    2. Ding, Tianrong & Zhang, Yuankai & Wang, Zheng & Hu, Xiangpei, 2024. "Velocity-based rack storage location assignment for the unidirectional robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    3. Zhuang, Yanling & Zhou, Yun & Yuan, Yufei & Hu, Xiangpei & Hassini, Elkafi, 2022. "Order picking optimization with rack-moving mobile robots and multiple workstations," European Journal of Operational Research, Elsevier, vol. 300(2), pages 527-544.
    4. Jiang, Min & Huang, George Q., 2022. "Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    5. Justkowiak, Jan-Erik & Pesch, Erwin, 2023. "Stronger mixed-integer programming-formulations for order- and rack-sequencing in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1063-1078.
    6. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2024. "Improving order picking efficiency through storage assignment optimization in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 316(2), pages 718-732.
    7. Onal, Sevilay & Zhu, Wen & Das, Sanchoy, 2023. "Order picking heuristics for online order fulfillment warehouses with explosive storage," International Journal of Production Economics, Elsevier, vol. 256(C).
    8. Sonja Otten & Ruslan Krenzler & Lin Xie & Hans Daduna & Karsten Kruse, 2022. "Analysis of semi-open queueing networks using lost customers approximation with an application to robotic mobile fulfilment systems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 603-648, June.
    9. Zhong, Shuya & Giannikas, Vaggelis & Merino, Jorge & McFarlane, Duncan & Cheng, Jun & Shao, Wei, 2022. "Evaluating the benefits of picking and packing planning integration in e-commerce warehouses," European Journal of Operational Research, Elsevier, vol. 301(1), pages 67-81.
    10. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2022. "Rack retrieval and repositioning optimization problem in robotic mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    11. Justkowiak, Jan-Erik & Pesch, Erwin, 2023. "A column generation driven heuristic for order-scheduling and rack-sequencing in robotic mobile fulfillment systems," Omega, Elsevier, vol. 120(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Min & Leung, K.H. & Lyu, Zhongyuan & Huang, George Q., 2020. "Picking-replenishment synchronization for robotic forward-reserve warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    2. Jiang, Min & Huang, George Q., 2022. "Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    3. Zhuang, Yanling & Zhou, Yun & Yuan, Yufei & Hu, Xiangpei & Hassini, Elkafi, 2022. "Order picking optimization with rack-moving mobile robots and multiple workstations," European Journal of Operational Research, Elsevier, vol. 300(2), pages 527-544.
    4. Justkowiak, Jan-Erik & Pesch, Erwin, 2023. "Stronger mixed-integer programming-formulations for order- and rack-sequencing in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1063-1078.
    5. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    6. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2022. "Rack retrieval and repositioning optimization problem in robotic mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    7. Jianming Cai & Xiaokang Li & Yue Liang & Shan Ouyang, 2021. "Collaborative Optimization of Storage Location Assignment and Path Planning in Robotic Mobile Fulfillment Systems," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    8. Ding, Tianrong & Zhang, Yuankai & Wang, Zheng & Hu, Xiangpei, 2024. "Velocity-based rack storage location assignment for the unidirectional robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    9. Russell Allgor & Tolga Cezik & Daniel Chen, 2023. "Algorithm for Robotic Picking in Amazon Fulfillment Centers Enables Humans and Robots to Work Together Effectively," Interfaces, INFORMS, vol. 53(4), pages 266-282, July.
    10. Bingqian WANG & Xiuqing YANG & Mingyao QI, 2023. "Order and rack sequencing in a robotic mobile fulfillment system with multiple picking stations," Flexible Services and Manufacturing Journal, Springer, vol. 35(2), pages 509-547, June.
    11. Roy, Debjit & Nigam, Shobhit & de Koster, René & Adan, Ivo & Resing, Jacques, 2019. "Robot-storage zone assignment strategies in mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 119-142.
    12. Li, Xiaowei & Hua, Guowei & Huang, Anqiang & Sheu, Jiuh-Biing & Cheng, T.C.E. & Huang, Fengquan, 2020. "Storage assignment policy with awareness of energy consumption in the Kiva mobile fulfilment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    13. Lamballais, T. & Merschformann, M. & Roy, D. & de Koster, M.B.M. & Azadeh, K. & Suhl, L., 2022. "Dynamic policies for resource reallocation in a robotic mobile fulfillment system with time-varying demand," European Journal of Operational Research, Elsevier, vol. 300(3), pages 937-952.
    14. Justkowiak, Jan-Erik & Pesch, Erwin, 2023. "A column generation driven heuristic for order-scheduling and rack-sequencing in robotic mobile fulfillment systems," Omega, Elsevier, vol. 120(C).
    15. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2024. "Improving order picking efficiency through storage assignment optimization in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 316(2), pages 718-732.
    16. Xu, Xianhao & Chen, Yuerong & Zou, Bipan & Gong, Yeming, 2022. "Assignment of parcels to loading stations in robotic sorting systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    17. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.
    18. Lu Zhen & Jingwen Wu & Haolin Li & Zheyi Tan & Yingying Yuan, 2023. "Scheduling multiple types of equipment in an automated warehouse," Annals of Operations Research, Springer, vol. 322(2), pages 1119-1141, March.
    19. Merschformann, M. & Lamballais, T. & de Koster, M.B.M. & Suhl, L., 2019. "Decision rules for robotic mobile fulfillment systems," Operations Research Perspectives, Elsevier, vol. 6(C).
    20. Onal, Sevilay & Zhu, Wen & Das, Sanchoy, 2023. "Order picking heuristics for online order fulfillment warehouses with explosive storage," International Journal of Production Economics, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:288:y:2021:i:1:p:80-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.