Interpretable support vector machines for functional data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ejor.2012.08.017
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lindquist, Martin A. & McKeague, Ian W., 2009. "Logistic Regression With Brownian-Like Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1575-1585.
- Emilio Carrizosa & Belen Martin-Barragan & Dolores Romero Morales, 2010. "Binarized Support Vector Machines," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 154-167, February.
- Van Gestel, Tony & Martens, David & Baesens, Bart & Feremans, Daniel & Huysmans, Johan & Vanthienen, Jan, 2007. "Forecasting and analyzing insurance companies' ratings," International Journal of Forecasting, Elsevier, vol. 23(3), pages 513-529.
- Martens, David & Baesens, Bart & Van Gestel, Tony & Vanthienen, Jan, 2007. "Comprehensible credit scoring models using rule extraction from support vector machines," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1466-1476, December.
- Laukaitis, Algirdas, 2008. "Functional data analysis for cash flow and transactions intensity continuous-time prediction using Hilbert-valued autoregressive processes," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1607-1614, March.
- Laukaitis, Algirdas & Rackauskas, Alfredas, 2005. "Functional data analysis for clients segmentation tasks," European Journal of Operational Research, Elsevier, vol. 163(1), pages 210-216, May.
- B Baesens & C Mues & D Martens & J Vanthienen, 2009. "50 years of data mining and OR: upcoming trends and challenges," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 16-23, May.
- Bart Baesens & Rudy Setiono & Christophe Mues & Jan Vanthienen, 2003. "Using Neural Network Rule Extraction and Decision Tables for Credit-Risk Evaluation," Management Science, INFORMS, vol. 49(3), pages 312-329, March.
- Lessmann, Stefan & Voß, Stefan, 2009. "A reference model for customer-centric data mining with support vector machines," European Journal of Operational Research, Elsevier, vol. 199(2), pages 520-530, December.
- Carrizosa, Emilio & Martín-Barragán, Belén & Morales, Dolores Romero, 2011. "Detecting relevant variables and interactions in supervised classification," European Journal of Operational Research, Elsevier, vol. 213(1), pages 260-269, August.
- Li, Bin & Yu, Qingzhao, 2008. "Classification of functional data: A segmentation approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4790-4800, June.
- Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
- Ferraty, F. & Vieu, P., 2003. "Curves discrimination: a nonparametric functional approach," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 161-173, October.
- Verbeke, Wouter & Dejaeger, Karel & Martens, David & Hur, Joon & Baesens, Bart, 2012. "New insights into churn prediction in the telecommunication sector: A profit driven data mining approach," European Journal of Operational Research, Elsevier, vol. 218(1), pages 211-229.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Blanquero, Rafael & Carrizosa, Emilio & Molero-Río, Cristina & Romero Morales, Dolores, 2020. "Sparsity in optimal randomized classification trees," European Journal of Operational Research, Elsevier, vol. 284(1), pages 255-272.
- Bottmer, Lea & Croux, Christophe & Wilms, Ines, 2022. "Sparse regression for large data sets with outliers," European Journal of Operational Research, Elsevier, vol. 297(2), pages 782-794.
- Blanquero, R. & Carrizosa, E. & Jiménez-Cordero, A. & Martín-Barragán, B., 2019. "Functional-bandwidth kernel for Support Vector Machine with Functional Data: An alternating optimization algorithm," European Journal of Operational Research, Elsevier, vol. 275(1), pages 195-207.
- Benítez-Peña, Sandra & Carrizosa, Emilio & Guerrero, Vanesa & Jiménez-Gamero, M. Dolores & Martín-Barragán, Belén & Molero-Río, Cristina & Ramírez-Cobo, Pepa & Romero Morales, Dolores & Sillero-Denami, 2021. "On sparse ensemble methods: An application to short-term predictions of the evolution of COVID-19," European Journal of Operational Research, Elsevier, vol. 295(2), pages 648-663.
- Floriello, Davide & Vitelli, Valeria, 2017. "Sparse clustering of functional data," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 1-18.
- Ballings, Michel & Van den Poel, Dirk, 2015. "CRM in social media: Predicting increases in Facebook usage frequency," European Journal of Operational Research, Elsevier, vol. 244(1), pages 248-260.
- Pedro Duarte Silva, A., 2017. "Optimization approaches to Supervised Classification," European Journal of Operational Research, Elsevier, vol. 261(2), pages 772-788.
- Blanquero, Rafael & Carrizosa, Emilio & Molero-Río, Cristina & Morales, Dolores Romero, 2022. "On sparse optimal regression trees," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1045-1054.
- Jian Luo & Shu-Cherng Fang & Zhibin Deng & Xiaoling Guo, 2016. "Soft Quadratic Surface Support Vector Machine for Binary Classification," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(06), pages 1-22, December.
- Menafoglio, Alessandra & Secchi, Piercesare, 2017. "Statistical analysis of complex and spatially dependent data: A review of Object Oriented Spatial Statistics," European Journal of Operational Research, Elsevier, vol. 258(2), pages 401-410.
- Chen, Zhen-Yu & Fan, Zhi-Ping & Sun, Minghe, 2019. "Individual-level social influence identification in social media: A learning-simulation coordinated method," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1005-1015.
- Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2017. "Multivariate and functional classification using depth and distance," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 445-466, September.
- Fraiman, Ricardo & Gimenez, Yanina & Svarc, Marcela, 2016. "Feature selection for functional data," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 191-208.
- Emilio Carrizosa & Jasone Ramírez-Ayerbe & Dolores Romero Morales, 2024. "A new model for counterfactual analysis for functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(4), pages 981-1000, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dejaeger, Karel & Goethals, Frank & Giangreco, Antonio & Mola, Lapo & Baesens, Bart, 2012.
"Gaining insight into student satisfaction using comprehensible data mining techniques,"
European Journal of Operational Research, Elsevier, vol. 218(2), pages 548-562.
- Karel Dejaeger & Frank Goethals & Antonio Giangreco & Lapo Mola & Bart Baesens, 2012. "Gaining insight into student satisfaction using comprehensible data mining techniques," Post-Print halshs-01929190, HAL.
- K. Dejeager & F. Goethals & A. Giangreco & L. Mola & B. Baesens, 2012. "Gaining insight into student satisfaction using comprehensible data mining techniques," Post-Print hal-00787269, HAL.
- De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
- Blanquero, Rafael & Carrizosa, Emilio & Molero-Río, Cristina & Morales, Dolores Romero, 2022. "On sparse optimal regression trees," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1045-1054.
- Carrizosa, Emilio & Martín-Barragán, Belén & Morales, Dolores Romero, 2011. "Detecting relevant variables and interactions in supervised classification," European Journal of Operational Research, Elsevier, vol. 213(1), pages 260-269, August.
- Blanquero, Rafael & Carrizosa, Emilio & Molero-Río, Cristina & Romero Morales, Dolores, 2020. "Sparsity in optimal randomized classification trees," European Journal of Operational Research, Elsevier, vol. 284(1), pages 255-272.
- K. Coussement & K. W. Bock & S. Geuens, 2022. "A decision-analytic framework for interpretable recommendation systems with multiple input data sources: a case study for a European e-tailer," Annals of Operations Research, Springer, vol. 315(2), pages 671-694, August.
- Loterman, Gert & Brown, Iain & Martens, David & Mues, Christophe & Baesens, Bart, 2012. "Benchmarking regression algorithms for loss given default modeling," International Journal of Forecasting, Elsevier, vol. 28(1), pages 161-170.
- Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013.
"Description length and dimensionality reduction in functional data analysis,"
Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
- D. S. Poskitt & Arivalzahan Sengarapillai, 2009. "Description Length and Dimensionality Reduction in Functional Data Analysis," Monash Econometrics and Business Statistics Working Papers 13/09, Monash University, Department of Econometrics and Business Statistics.
- Brandner, Hubertus & Lessmann, Stefan & Voß, Stefan, 2013. "A memetic approach to construct transductive discrete support vector machines," European Journal of Operational Research, Elsevier, vol. 230(3), pages 581-595.
- Blanquero, R. & Carrizosa, E. & Jiménez-Cordero, A. & Martín-Barragán, B., 2019. "Functional-bandwidth kernel for Support Vector Machine with Functional Data: An alternating optimization algorithm," European Journal of Operational Research, Elsevier, vol. 275(1), pages 195-207.
- B Baesens & C Mues & D Martens & J Vanthienen, 2009. "50 years of data mining and OR: upcoming trends and challenges," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 16-23, May.
- Pedro Duarte Silva, A., 2017. "Optimization approaches to Supervised Classification," European Journal of Operational Research, Elsevier, vol. 261(2), pages 772-788.
- Höppner, Sebastiaan & Baesens, Bart & Verbeke, Wouter & Verdonck, Tim, 2022. "Instance-dependent cost-sensitive learning for detecting transfer fraud," European Journal of Operational Research, Elsevier, vol. 297(1), pages 291-300.
- Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019.
"Computational approaches and data analytics in financial services: A literature review,"
Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
- Dimitris Andriosopoulos & Michael Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Post-Print hal-02880149, HAL.
- Dimitris Andriosopoulos & Michael Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Post-Print hal-02879937, HAL.
- TOBBACK, Ellen & MARTENS, David & VAN GESTEL, Tony & BAESENS, Bart, 2012. "Forecasting loss given default models: Impact of account characteristics and the macroeconomic state," Working Papers 2012019, University of Antwerp, Faculty of Business and Economics.
- Jian Shi & Benlian Xu, 2016. "Credit Scoring by Fuzzy Support Vector Machines with a Novel Membership Function," JRFM, MDPI, vol. 9(4), pages 1-10, November.
- Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
- De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
- Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
- Alonso, Andrés M. & Casado, David & Romo, Juan, 2012. "Supervised classification for functional data: A weighted distance approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2334-2346.
More about this item
Keywords
Data mining; Interpretability; Classification; Linear programming; Regularization methods; Functional data analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:232:y:2014:i:1:p:146-155. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.