IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i3p1749-1767.html
   My bibliography  Save this article

Benders Subproblem Decomposition for Bilevel Problems with Convex Follower

Author

Listed:
  • Geunyeong Byeon

    (School of Computing and Augmented Intelligence, Arizona State University, Tempe, Arizona 85281)

  • Pascal Van Hentenryck

    (H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

Abstract

Bilevel optimization formulates hierarchical decision-making processes that arise in many real-world applications, such as pricing, network design, and infrastructure defense planning. In this paper, we consider a class of bilevel optimization problems in which the upper level problem features some integer variables and the lower level problem enjoys strong duality. We propose a dedicated Benders decomposition method for solving this class of bilevel problems, which decomposes the Benders subproblem into two more tractable, sequentially solvable problems that can be interpreted as the upper and lower level problems. We show that the Benders subproblem decomposition carries over to an interesting extension of bilevel problems, which connects the upper level solution with the lower level dual solution, and discuss some special cases of bilevel problems that allow sequence-independent subproblem decomposition. Several novel schemes for generating numerically stable cuts, finding a good incumbent solution, and accelerating the search tree are discussed. A computational study demonstrates the computational benefits of the proposed method over a state-of-the-art, bilevel-tailored, branch-and-cut method; a commercial solver; and the standard Benders method on standard test cases and the motivating applications in sequential energy markets.

Suggested Citation

  • Geunyeong Byeon & Pascal Van Hentenryck, 2022. "Benders Subproblem Decomposition for Bilevel Problems with Convex Follower," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1749-1767, May.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:3:p:1749-1767
    DOI: 10.1287/ijoc.2021.1128
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2021.1128
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2021.1128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martine Labbé & Patrice Marcotte & Gilles Savard, 1998. "A Bilevel Model of Taxation and Its Application to Optimal Highway Pricing," Management Science, INFORMS, vol. 44(12-Part-1), pages 1608-1622, December.
    2. Cao, Dong & Chen, Mingyuan, 2006. "Capacitated plant selection in a decentralized manufacturing environment: A bilevel optimization approach," European Journal of Operational Research, Elsevier, vol. 169(1), pages 97-110, February.
    3. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2017. "A New General-Purpose Algorithm for Mixed-Integer Bilevel Linear Programs," Operations Research, INFORMS, vol. 65(6), pages 1615-1637, December.
    4. Fontaine, Pirmin & Minner, Stefan, 2014. "Benders Decomposition for Discrete–Continuous Linear Bilevel Problems with application to traffic network design," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 163-172.
    5. M. Hosein Zare & Juan S. Borrero & Bo Zeng & Oleg A. Prokopyev, 2019. "A note on linearized reformulations for a class of bilevel linear integer problems," Annals of Operations Research, Springer, vol. 272(1), pages 99-117, January.
    6. Leonardo Lozano & J. Cole Smith, 2017. "A Value-Function-Based Exact Approach for the Bilevel Mixed-Integer Programming Problem," Operations Research, INFORMS, vol. 65(3), pages 768-786, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jinpei & Bai, Xuejie & Liu, Yankui, 2023. "Globalized robust bilevel optimization model for hazmat transport network design considering reliability," Reliability Engineering and System Safety, Elsevier, vol. 239(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Shaonan & Wang, Mingzheng & Kong, Nan & Hu, Xiangpei, 2021. "An enhanced branch-and-bound algorithm for bilevel integer linear programming," European Journal of Operational Research, Elsevier, vol. 291(2), pages 661-679.
    2. Böttger, T. & Grimm, V. & Kleinert, T. & Schmidt, M., 2022. "The cost of decoupling trade and transport in the European entry-exit gas market with linear physics modeling," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1095-1111.
    3. Rahman Khorramfar & Osman Y. Özaltın & Karl G. Kempf & Reha Uzsoy, 2022. "Managing Product Transitions: A Bilevel Programming Approach," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2828-2844, September.
    4. Serrano, Breno & Minner, Stefan & Schiffer, Maximilian & Vidal, Thibaut, 2024. "Bilevel optimization for feature selection in the data-driven newsvendor problem," European Journal of Operational Research, Elsevier, vol. 315(2), pages 703-714.
    5. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    6. Joaquim Dias Garcia & Guilherme Bodin & Alexandre Street, 2024. "BilevelJuMP.jl: Modeling and Solving Bilevel Optimization Problems in Julia," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 327-335, March.
    7. Liu, Shaonan & Kong, Nan & Parikh, Pratik & Wang, Mingzheng, 2023. "Optimal trauma care network redesign with government subsidy: A bilevel integer programming approach," Omega, Elsevier, vol. 119(C).
    8. George Kozanidis & Eftychia Kostarelou, 2023. "An Exact Solution Algorithm for Integer Bilevel Programming with Application in Energy Market Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 573-607, May.
    9. Tanınmış, Kübra & Aras, Necati & Altınel, İ. Kuban, 2022. "Improved x-space algorithm for min-max bilevel problems with an application to misinformation spread in social networks," European Journal of Operational Research, Elsevier, vol. 297(1), pages 40-52.
    10. Francisco López-Ramos & Stefano Nasini & Armando Guarnaschelli, 2019. "Road network pricing and design for ordinary and hazmat vehicles: Integrated model and specialized local search," Post-Print hal-02510066, HAL.
    11. Beikverdi, Majid & Tehrani, Nasim Ghanbar & Shahanaghi, Kamran, 2024. "A Bi-level model for district-fairness participatory budgeting: Decomposition methods and application," European Journal of Operational Research, Elsevier, vol. 314(1), pages 340-362.
    12. Soares, Inês & Alves, Maria João & Henggeler Antunes, Carlos, 2021. "A deterministic bounding procedure for the global optimization of a bi-level mixed-integer problem," European Journal of Operational Research, Elsevier, vol. 291(1), pages 52-66.
    13. Claudio Contardo & Jorge A. Sefair, 2022. "A Progressive Approximation Approach for the Exact Solution of Sparse Large-Scale Binary Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 890-908, March.
    14. Pirmin Fontaine & Stefan Minner, 2017. "A dynamic discrete network design problem for maintenance planning in traffic networks," Annals of Operations Research, Springer, vol. 253(2), pages 757-772, June.
    15. Afkham, Maryam & Ramezanian, Reza & Shahparvari, Shahrooz, 2022. "Balancing traffic flow in the congested mass self-evacuation dynamic network under tight preparation budget: An Australian bushfire practice," Omega, Elsevier, vol. 111(C).
    16. Wang, Jinpei & Bai, Xuejie & Liu, Yankui, 2023. "Globalized robust bilevel optimization model for hazmat transport network design considering reliability," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    17. Wang, Guangmin & Gao, Ziyou & Xu, Meng, 2019. "Integrating link-based discrete credit charging scheme into discrete network design problem," European Journal of Operational Research, Elsevier, vol. 272(1), pages 176-187.
    18. Furini, Fabio & Ljubić, Ivana & Martin, Sébastien & San Segundo, Pablo, 2019. "The maximum clique interdiction problem," European Journal of Operational Research, Elsevier, vol. 277(1), pages 112-127.
    19. Fontaine, Pirmin & Minner, Stefan, 2018. "Benders decomposition for the Hazmat Transport Network Design Problem," European Journal of Operational Research, Elsevier, vol. 267(3), pages 996-1002.
    20. Kosmas, Daniel & Sharkey, Thomas C. & Mitchell, John E. & Maass, Kayse Lee & Martin, Lauren, 2023. "Interdicting restructuring networks with applications in illicit trafficking," European Journal of Operational Research, Elsevier, vol. 308(2), pages 832-851.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:3:p:1749-1767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.