IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v262y2017i2p449-463.html
   My bibliography  Save this article

Capacity planning with competitive decision-makers: Trilevel MILP formulation, degeneracy, and solution approaches

Author

Listed:
  • Florensa, Carlos
  • Garcia-Herreros, Pablo
  • Misra, Pratik
  • Arslan, Erdem
  • Mehta, Sanjay
  • Grossmann, Ignacio E.

Abstract

Capacity planning addresses the decision problem of an industrial producer investing on infrastructure to satisfy future demand with the highest profit. Traditional models neglect the rational behavior of some external decision-makers by assuming either static competition or captive markets. We propose a mathematical programing formulation with three levels of decision-makers to capture the dynamics of duopolistic markets. The trilevel model is transformed into a bilevel optimization problem with mixed-integer variables in both levels by replacing the third-level linear program with its optimality conditions. We introduce new definitions required for the analysis of degeneracy in multilevel models, and develop two novel algorithms to solve these challenging problems. Each algorithm is shown to converge to a different type of degenerate solution. The computational experiments for capacity expansion in industrial gas markets show that no algorithm is strictly superior in terms of performance.

Suggested Citation

  • Florensa, Carlos & Garcia-Herreros, Pablo & Misra, Pratik & Arslan, Erdem & Mehta, Sanjay & Grossmann, Ignacio E., 2017. "Capacity planning with competitive decision-makers: Trilevel MILP formulation, degeneracy, and solution approaches," European Journal of Operational Research, Elsevier, vol. 262(2), pages 449-463.
  • Handle: RePEc:eee:ejores:v:262:y:2017:i:2:p:449-463
    DOI: 10.1016/j.ejor.2017.04.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717303466
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.04.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Omar Ben-Ayed & Charles E. Blair, 1990. "Computational Difficulties of Bilevel Linear Programming," Operations Research, INFORMS, vol. 38(3), pages 556-560, June.
    2. Hakimi, S. Louis, 1983. "On locating new facilities in a competitive environment," European Journal of Operational Research, Elsevier, vol. 12(1), pages 29-35, January.
    3. Bard, Jonathan F. & Plummer, John & Claude Sourie, Jean, 2000. "A bilevel programming approach to determining tax credits for biofuel production," European Journal of Operational Research, Elsevier, vol. 120(1), pages 30-46, January.
    4. Anandalingam, G. & Apprey, Victor, 1991. "Multi-level programming and conflict resolution," European Journal of Operational Research, Elsevier, vol. 51(2), pages 233-247, March.
    5. Zeynep Gümüş & Christodoulos Floudas, 2005. "Global optimization of mixed-integer bilevel programming problems," Computational Management Science, Springer, vol. 2(3), pages 181-212, July.
    6. Hanif D. Sherali & Allen L. Soyster & Frederic H. Murphy, 1983. "Stackelberg-Nash-Cournot Equilibria: Characterizations and Computations," Operations Research, INFORMS, vol. 31(2), pages 253-276, April.
    7. Paul Berglund & Changhyun Kwon, 2014. "Solving a Location Problem of a Stackelberg Firm Competing with Cournot-Nash Firms," Networks and Spatial Economics, Springer, vol. 14(1), pages 117-132, March.
    8. Polyxeni-Margarita Kleniati & Claire Adjiman, 2014. "Branch-and-Sandwich: a deterministic global optimization algorithm for optimistic bilevel programming problems. Part I: Theoretical development," Journal of Global Optimization, Springer, vol. 60(3), pages 425-458, November.
    9. Fred Glover, 1975. "Improved Linear Integer Programming Formulations of Nonlinear Integer Problems," Management Science, INFORMS, vol. 22(4), pages 455-460, December.
    10. Polyxeni-M. Kleniati & Claire Adjiman, 2014. "Branch-and-Sandwich: a deterministic global optimization algorithm for optimistic bilevel programming problems. Part II: Convergence analysis and numerical results," Journal of Global Optimization, Springer, vol. 60(3), pages 459-481, November.
    11. Roboredo, Marcos Costa & Pessoa, Artur Alves, 2013. "A branch-and-cut algorithm for the discrete (r∣p)-centroid problem," European Journal of Operational Research, Elsevier, vol. 224(1), pages 101-109.
    12. Frederic H. Murphy & Yves Smeers, 2005. "Generation Capacity Expansion in Imperfectly Competitive Restructured Electricity Markets," Operations Research, INFORMS, vol. 53(4), pages 646-661, August.
    13. Tan Miller & Terry Friesz & Roger Tobin & Changhyun Kwon, 2007. "Reaction Function Based Dynamic Location Modeling in Stackelberg–Nash–Cournot Competition," Networks and Spatial Economics, Springer, vol. 7(1), pages 77-97, March.
    14. Friesz, Terry L. & Rigdon, Matthew A. & Mookherjee, Reetabrata, 2006. "Differential variational inequalities and shipper dynamic oligopolistic network competition," Transportation Research Part B: Methodological, Elsevier, vol. 40(6), pages 480-503, July.
    15. Kress, Dominik & Pesch, Erwin, 2012. "Sequential competitive location on networks," European Journal of Operational Research, Elsevier, vol. 217(3), pages 483-499.
    16. James T. Moore & Jonathan F. Bard, 1990. "The Mixed Integer Linear Bilevel Programming Problem," Operations Research, INFORMS, vol. 38(5), pages 911-921, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Dempe & O. Khamisov & Yu. Kochetov, 2020. "A special three-level optimization problem," Journal of Global Optimization, Springer, vol. 76(3), pages 519-531, March.
    2. Fakhry, Ramy & Hassini, Elkafi & Ezzeldin, Mohamed & El-Dakhakhni, Wael, 2022. "Tri-level mixed-binary linear programming: Solution approaches and application in defending critical infrastructure," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1114-1131.
    3. Liu, Shaonan & Wang, Mingzheng & Kong, Nan & Hu, Xiangpei, 2021. "An enhanced branch-and-bound algorithm for bilevel integer linear programming," European Journal of Operational Research, Elsevier, vol. 291(2), pages 661-679.
    4. Maryam Esmaeili & Habibe Sadeghi, 2018. "An Investigation of the Optimistic Solution to the Linear Trilevel Programming Problem," Mathematics, MDPI, vol. 6(10), pages 1-11, September.
    5. Dajun Yue & Jiyao Gao & Bo Zeng & Fengqi You, 2019. "A projection-based reformulation and decomposition algorithm for global optimization of a class of mixed integer bilevel linear programs," Journal of Global Optimization, Springer, vol. 73(1), pages 27-57, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gentile, José & Alves Pessoa, Artur & Poss, Michael & Costa Roboredo, Marcos, 2018. "Integer programming formulations for three sequential discrete competitive location problems with foresight," European Journal of Operational Research, Elsevier, vol. 265(3), pages 872-881.
    2. Xiang Li & Tianyu Zhang & Liang Wang & Hongguang Ma & Xiande Zhao, 2022. "A minimax regret model for the leader–follower facility location problem," Annals of Operations Research, Springer, vol. 309(2), pages 861-882, February.
    3. Dolores R. Santos-Peñate & Clara M. Campos-Rodríguez & José A. Moreno-Pérez, 2020. "A Kernel Search Matheuristic to Solve The Discrete Leader-Follower Location Problem," Networks and Spatial Economics, Springer, vol. 20(1), pages 73-98, March.
    4. Tolga H. Seyhan & Lawrence V. Snyder & Ying Zhang, 2018. "A New Heuristic Formulation for a Competitive Maximal Covering Location Problem," Transportation Science, INFORMS, vol. 52(5), pages 1156-1173, October.
    5. Richard Oberdieck & Nikolaos A. Diangelakis & Styliani Avraamidou & Efstratios N. Pistikopoulos, 2017. "On unbounded and binary parameters in multi-parametric programming: applications to mixed-integer bilevel optimization and duality theory," Journal of Global Optimization, Springer, vol. 69(3), pages 587-606, November.
    6. Alexander Mitsos, 2010. "Global solution of nonlinear mixed-integer bilevel programs," Journal of Global Optimization, Springer, vol. 47(4), pages 557-582, August.
    7. Zhang, Ying & Snyder, Lawrence V. & Ralphs, Ted K. & Xue, Zhaojie, 2016. "The competitive facility location problem under disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 453-473.
    8. Zhao, Ning & You, Fengqi, 2019. "Dairy waste-to-energy incentive policy design using Stackelberg-game-based modeling and optimization," Applied Energy, Elsevier, vol. 254(C).
    9. Benoît Colson & Patrice Marcotte & Gilles Savard, 2007. "An overview of bilevel optimization," Annals of Operations Research, Springer, vol. 153(1), pages 235-256, September.
    10. R. Paulavičius & C. S. Adjiman, 2020. "New bounding schemes and algorithmic options for the Branch-and-Sandwich algorithm," Journal of Global Optimization, Springer, vol. 77(2), pages 197-225, June.
    11. Diego Ruiz-Hernández & Javier Elizalde & David Delgado-Gómez, 2017. "Cournot–Stackelberg games in competitive delocation," Annals of Operations Research, Springer, vol. 256(1), pages 149-170, September.
    12. Eligius M. T. Hendrix, 2016. "On competition in a Stackelberg location-design model with deterministic supplier choice," Annals of Operations Research, Springer, vol. 246(1), pages 19-30, November.
    13. Paul Berglund & Changhyun Kwon, 2014. "Solving a Location Problem of a Stackelberg Firm Competing with Cournot-Nash Firms," Networks and Spatial Economics, Springer, vol. 14(1), pages 117-132, March.
    14. Ghavamifar, Ali & Makui, Ahmad & Taleizadeh, Ata Allah, 2018. "Designing a resilient competitive supply chain network under disruption risks: A real-world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 87-109.
    15. Dajun Yue & Jiyao Gao & Bo Zeng & Fengqi You, 2019. "A projection-based reformulation and decomposition algorithm for global optimization of a class of mixed integer bilevel linear programs," Journal of Global Optimization, Springer, vol. 73(1), pages 27-57, January.
    16. Mathur, Kanchan & Puri, M. C., 1995. "A bilevel bottleneck programming problem," European Journal of Operational Research, Elsevier, vol. 86(2), pages 337-344, October.
    17. Hatim Djelassi & Moll Glass & Alexander Mitsos, 2019. "Discretization-based algorithms for generalized semi-infinite and bilevel programs with coupling equality constraints," Journal of Global Optimization, Springer, vol. 75(2), pages 341-392, October.
    18. Küçükaydin, Hande & Aras, Necati & Kuban AltInel, I., 2011. "Competitive facility location problem with attractiveness adjustment of the follower: A bilevel programming model and its solution," European Journal of Operational Research, Elsevier, vol. 208(3), pages 206-220, February.
    19. Godinho, Pedro & Dias, Joana, 2013. "Two-player simultaneous location game: Preferential rights and overbidding," European Journal of Operational Research, Elsevier, vol. 229(3), pages 663-672.
    20. Juan S. Borrero & Oleg A. Prokopyev & Denis Sauré, 2019. "Sequential Interdiction with Incomplete Information and Learning," Operations Research, INFORMS, vol. 67(1), pages 72-89, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:262:y:2017:i:2:p:449-463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.