Author
Listed:
- Fotios Petropoulos
(Lancaster Centre for Forecasting, Lancaster University Management School, Lancaster University, Lancaster, UK)
- Nikolaos Kourentzes
(Lancaster Centre for Forecasting, Lancaster University Management School, Lancaster University, Lancaster, UK)
Abstract
Intermittent demand is characterised by infrequent demand arrivals, where many periods have zero demand, coupled with varied demand sizes. The dual source of variation renders forecasting for intermittent demand a very challenging task. Many researchers have focused on the development of specialised methods for intermittent demand. However, apart from a case study on hierarchical forecasting, the effects of combining, which is a standard practice for regular demand, have not been investigated. This paper empirically explores the efficiency of forecast combinations in the intermittent demand context. We examine both method and temporal combinations of forecasts. The first are based on combinations of different methods on the same time series, while the latter use combinations of forecasts produced on different views of the time series, based on temporal aggregation. Temporal combinations of single or multiple methods are investigated, leading to a new time-series classification, which leads to model selection and combination. Results suggest that appropriate combinations lead to improved forecasting performance over single methods, as well as simplifying the forecasting process by limiting the need for manual selection of methods or hyper-parameters of good performing benchmarks. This has direct implications for intermittent demand forecasting in practice.
Suggested Citation
Fotios Petropoulos & Nikolaos Kourentzes, 2015.
"Forecast combinations for intermittent demand,"
Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(6), pages 914-924, June.
Handle:
RePEc:pal:jorsoc:v:66:y:2015:i:6:p:914-924
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:66:y:2015:i:6:p:914-924. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.