IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v291y2021i1p18-31.html
   My bibliography  Save this article

On the Stackelberg knapsack game

Author

Listed:
  • Pferschy, Ulrich
  • Nicosia, Gaia
  • Pacifici, Andrea
  • Schauer, Joachim

Abstract

In this work we consider a bilevel knapsack problem, in which one player, the follower, decides on the optimal utilization of a bounded resource. The second player, the leader, can offer incentives, or shared profits, so that the follower chooses options attractive also for the leader. Formally, each of the two players is associated with a subset of the knapsack items. The leader may offer profits for its items as incentives to the follower, before the follower selects a subset of all items in order to maximize its overall profit. The leader receives as pay-off only the profits from those of its items that are included by the follower in the overall knapsack solution. This pay-off is then reduced by the profits offered to the follower. The resulting setting is a Stackelberg strategic game. The leader has to resolve the trade-off between offering high profits as incentives to the follower and offering low profits to gain high pay-offs.We analyze the problem for the case in which the follower solves the resulting knapsack problem to optimality and obtain a number of strong complexity results. Then we invoke a common assumption of the literature, namely that the follower’s computing power is bounded. Under this condition, we study several natural Greedy-type heuristics applied by the follower. The solution structure and complexity of the resulting problems are investigated and solution strategies are derived, in particular an Integer Linear Programming (ILP) model, but also pseudopolynomial and polynomial algorithms, when possible.

Suggested Citation

  • Pferschy, Ulrich & Nicosia, Gaia & Pacifici, Andrea & Schauer, Joachim, 2021. "On the Stackelberg knapsack game," European Journal of Operational Research, Elsevier, vol. 291(1), pages 18-31.
  • Handle: RePEc:eee:ejores:v:291:y:2021:i:1:p:18-31
    DOI: 10.1016/j.ejor.2020.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720307931
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Lv & Shen, Yang, 2018. "On A New Paradigm Of Optimal Reinsurance: A Stochastic Stackelberg Differential Game Between An Insurer And A Reinsurer," ASTIN Bulletin, Cambridge University Press, vol. 48(2), pages 905-960, May.
    2. Nicosia, Gaia & Pacifici, Andrea & Pferschy, Ulrich, 2017. "Price of Fairness for allocating a bounded resource," European Journal of Operational Research, Elsevier, vol. 257(3), pages 933-943.
    3. van Hoesel, Stan, 2008. "An overview of Stackelberg pricing in networks," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1393-1402, September.
    4. M. Hosein Zare & Oleg A. Prokopyev & Denis Sauré, 2020. "On Bilevel Optimization with Inexact Follower," Decision Analysis, INFORMS, vol. 17(1), pages 74-95, March.
    5. Fischetti, Matteo & Monaci, Michele & Sinnl, Markus, 2018. "A dynamic reformulation heuristic for Generalized Interdiction Problems," European Journal of Operational Research, Elsevier, vol. 267(1), pages 40-51.
    6. Darmann, Andreas & Nicosia, Gaia & Pferschy, Ulrich & Schauer, Joachim, 2014. "The Subset Sum game," European Journal of Operational Research, Elsevier, vol. 233(3), pages 539-549.
    7. Alberto Caprara & Margarida Carvalho & Andrea Lodi & Gerhard J. Woeginger, 2016. "Bilevel Knapsack with Interdiction Constraints," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 319-333, May.
    8. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2019. "Interdiction Games and Monotonicity, with Application to Knapsack Problems," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 390-410, April.
    9. Ensthaler, Ludwig & Giebe, Thomas, 2014. "Bayesian optimal knapsack procurement," European Journal of Operational Research, Elsevier, vol. 234(3), pages 774-779.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hughes, Michael S. & Lunday, Brian J., 2022. "The Weapon Target Assignment Problem: Rational Inference of Adversary Target Utility Valuations from Observed Solutions," Omega, Elsevier, vol. 107(C).
    2. Pazoki, Mostafa & Samarghandi, Hamed & Behroozi, Mehdi, 2024. "Increasing supply chain resiliency through equilibrium pricing and stipulating transportation quota regulation," Omega, Elsevier, vol. 127(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    2. Thomas Kleinert & Martin Schmidt, 2023. "Why there is no need to use a big-M in linear bilevel optimization: a computational study of two ready-to-use approaches," Computational Management Science, Springer, vol. 20(1), pages 1-12, December.
    3. Claudio Contardo & Jorge A. Sefair, 2022. "A Progressive Approximation Approach for the Exact Solution of Sparse Large-Scale Binary Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 890-908, March.
    4. Leitner, Markus & Ljubić, Ivana & Monaci, Michele & Sinnl, Markus & Tanınmış, Kübra, 2023. "An exact method for binary fortification games," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1026-1039.
    5. Keskin, Burcu B. & Griffin, Emily C. & Prell, Jonathan O. & Dilkina, Bistra & Ferber, Aaron & MacDonald, John & Hilend, Rowan & Griffis, Stanley & Gore, Meredith L., 2023. "Quantitative Investigation of Wildlife Trafficking Supply Chains: A Review," Omega, Elsevier, vol. 115(C).
    6. Kübra Tanınmış & Markus Sinnl, 2022. "A Branch-and-Cut Algorithm for Submodular Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2634-2657, September.
    7. Casorrán, Carlos & Fortz, Bernard & Labbé, Martine & Ordóñez, Fernando, 2019. "A study of general and security Stackelberg game formulations," European Journal of Operational Research, Elsevier, vol. 278(3), pages 855-868.
    8. Thomas Kleinert & Martin Schmidt, 2021. "Computing Feasible Points of Bilevel Problems with a Penalty Alternating Direction Method," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 198-215, January.
    9. Smith, J. Cole & Song, Yongjia, 2020. "A survey of network interdiction models and algorithms," European Journal of Operational Research, Elsevier, vol. 283(3), pages 797-811.
    10. Andrea Baggio & Margarida Carvalho & Andrea Lodi & Andrea Tramontani, 2021. "Multilevel Approaches for the Critical Node Problem," Operations Research, INFORMS, vol. 69(2), pages 486-508, March.
    11. Gabriele Dragotto & Amine Boukhtouta & Andrea Lodi & Mehdi Taobane, 2024. "The critical node game," Journal of Combinatorial Optimization, Springer, vol. 47(5), pages 1-20, July.
    12. Cerulli, Martina & Serra, Domenico & Sorgente, Carmine & Archetti, Claudia & Ljubić, Ivana, 2023. "Mathematical programming formulations for the Collapsed k-Core Problem," European Journal of Operational Research, Elsevier, vol. 311(1), pages 56-72.
    13. Zhang, Yawen & Zhang, Caibin, 2024. "Stackelberg differential reinsurance and investment game for a dependent risk model with Ornstein–Uhlenbeck process," Statistics & Probability Letters, Elsevier, vol. 214(C).
    14. Nahid Rezaeinia & Julio César Góez & Mario Guajardo, 2022. "Efficiency and fairness criteria in the assignment of students to projects," Annals of Operations Research, Springer, vol. 319(2), pages 1717-1735, December.
    15. Ghossoub, Mario & Zhu, Michael B., 2024. "Stackelberg equilibria with multiple policyholders," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 189-201.
    16. Argyris, Nikolaos & Karsu, Özlem & Yavuz, Mirel, 2022. "Fair resource allocation: Using welfare-based dominance constraints," European Journal of Operational Research, Elsevier, vol. 297(2), pages 560-578.
    17. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2019. "Interdiction Games and Monotonicity, with Application to Knapsack Problems," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 390-410, April.
    18. Shuang Ma & Gang Du & Jianxin (Roger) Jiao & Ruchuan Zhang, 2016. "Hierarchical game joint optimization for product family-driven modular design," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(12), pages 1496-1509, December.
    19. Asmussen, Søren & Christensen, Bent Jesper & Thøgersen, Julie, 2019. "Nash equilibrium premium strategies for push–pull competition in a frictional non-life insurance market," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 92-100.
    20. Jarman, Felix & Meisner, Vincent, 2017. "Ex-post optimal knapsack procurement," Journal of Economic Theory, Elsevier, vol. 171(C), pages 35-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:291:y:2021:i:1:p:18-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.