IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v286y2020i1p233-249.html
   My bibliography  Save this article

A novel decomposition-based method for solving general-product structure assemble-to-order systems

Author

Listed:
  • ElHafsi, Mohsen
  • Fang, Jianxin
  • Hamouda, Essia

Abstract

Assemble-to-order (ATO) strategies are common to many industries. Despite their popularity, ATO systems remain challenging to analyze. We consider a general-product structure ATO problem modeled as an infinite horizon Markov decision process. As the optimal policy of such a system is computationally intractable, we develop a heuristic policy that is based on a decomposition of the original system, into a series of two-component ATO subsystems. We show that our decomposition heuristic policy (DHP) possesses many properties similar to those encountered in special-product structure ATO systems. Extensive numerical experiments show that the DHP is very efficient. In particular, we show that the DHP requires less than 10−5 the time required to obtain the optimal policy, with an average percentage cost gap less than 4% for systems with up to 5 components and 6 products. We also show that the DHP outperforms the state aggregation heuristic of Nadar et al. (2018), in terms of cost and computational effort. We further develop an information relaxation-based lower bound on the performance of the optimal policy. We show that such a bound is very efficient with an average percentage gap not exceeding 0.5% for systems with up to 5 components and 6 products. Using this lower bound, we further show that the average suboptimality gap of the DHP is within 9% for two special-product structure ATO systems, with up to 9 components and 10 products. Using a sophisticated computing platform, we believe the DHP can handle systems with a large number of components and products.

Suggested Citation

  • ElHafsi, Mohsen & Fang, Jianxin & Hamouda, Essia, 2020. "A novel decomposition-based method for solving general-product structure assemble-to-order systems," European Journal of Operational Research, Elsevier, vol. 286(1), pages 233-249.
  • Handle: RePEc:eee:ejores:v:286:y:2020:i:1:p:233-249
    DOI: 10.1016/j.ejor.2020.03.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720302307
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.03.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven A. Lippman, 1975. "Applying a New Device in the Optimization of Exponential Queuing Systems," Operations Research, INFORMS, vol. 23(4), pages 687-710, August.
    2. Ping Josephine Xu & Russell Allgor & Stephen C. Graves, 2009. "Benefits of Reevaluating Real-Time Order Fulfillment Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 340-355, January.
    3. Yingdong Lu & Jing-Sheng Song, 2005. "Order-Based Cost Optimization in Assemble-to-Order Systems," Operations Research, INFORMS, vol. 53(1), pages 151-169, February.
    4. Elhafsi, Mohsen & Hamouda, Essia, 2015. "Managing an assemble-to-order system with after sales market for components," European Journal of Operational Research, Elsevier, vol. 242(3), pages 828-841.
    5. Feng Cheng & Markus Ettl & Grace Lin & David D. Yao, 2002. "Inventory-Service Optimization in Configure-to-Order Systems," Manufacturing & Service Operations Management, INFORMS, vol. 4(2), pages 114-132, December.
    6. Cheng, T.C.E. & Gao, Chunyan & Shen, Houcai, 2011. "Production planning and inventory allocation of a single-product assemble-to-order system with failure-prone machines," International Journal of Production Economics, Elsevier, vol. 131(2), pages 604-617, June.
    7. Jing-Sheng Song & Susan H. Xu & Bin Liu, 1999. "Order-Fulfillment Performance Measures in an Assemble-to-Order System with Stochastic Leadtimes," Operations Research, INFORMS, vol. 47(1), pages 131-149, February.
    8. ElHafsi, Mohsen, 2009. "Optimal integrated production and inventory control of an assemble-to-order system with multiple non-unitary demand classes," European Journal of Operational Research, Elsevier, vol. 194(1), pages 127-142, April.
    9. Roman Kapuscinski & Rachel Q. Zhang & Paul Carbonneau & Robert Moore & Bill Reeves, 2004. "Inventory Decisions in Dell's Supply Chain," Interfaces, INFORMS, vol. 34(3), pages 191-205, June.
    10. Mustafa K. Doğru & Martin I. Reiman & Qiong Wang, 2010. "A Stochastic Programming Based Inventory Policy for Assemble-to-Order Systems with Application to the W Model," Operations Research, INFORMS, vol. 58(4-part-1), pages 849-864, August.
    11. Wenhui Zhou & Xiuli Chao, 2012. "Stein–Chen approximation and error bounds for order fill rates in assemble‐to‐order systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(8), pages 643-655, December.
    12. David B. Brown & Martin B. Haugh, 2017. "Information Relaxation Bounds for Infinite Horizon Markov Decision Processes," Operations Research, INFORMS, vol. 65(5), pages 1355-1379, October.
    13. Saif Benjaafar & Mohsen ElHafsi & Chung-Yee Lee & Weihua Zhou, 2011. "TECHNICAL NOTE---Optimal Control of an Assembly System with Multiple Stages and Multiple Demand Classes," Operations Research, INFORMS, vol. 59(2), pages 522-529, April.
    14. Willem van Jaarsveld & Alan Scheller-Wolf, 2015. "Optimization of Industrial-Scale Assemble-to-Order Systems," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 544-560, August.
    15. Albert Y. Ha, 1997. "Inventory Rationing in a Make-to-Stock Production System with Several Demand Classes and Lost Sales," Management Science, INFORMS, vol. 43(8), pages 1093-1103, August.
    16. Ke Fu & Vernon N. Hsu & Chung‐Yee Lee, 2011. "Approximation methods for the analysis of a multicomponent, multiproduct assemble‐to‐order system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(7), pages 685-704, October.
    17. ElHafsi, Mohsen & Fang, Jianxin & Camus, Herve, 2018. "Optimal control of a continuous-time W-configuration assemble-to-order system," European Journal of Operational Research, Elsevier, vol. 267(3), pages 917-932.
    18. Daniel Adelman & Adam J. Mersereau, 2008. "Relaxations of Weakly Coupled Stochastic Dynamic Programs," Operations Research, INFORMS, vol. 56(3), pages 712-727, June.
    19. David B. Brown & James E. Smith & Peng Sun, 2010. "Information Relaxations and Duality in Stochastic Dynamic Programs," Operations Research, INFORMS, vol. 58(4-part-1), pages 785-801, August.
    20. Martin I. Reiman & Qiong Wang, 2015. "Asymptotically Optimal Inventory Control for Assemble-to-Order Systems with Identical Lead Times," Operations Research, INFORMS, vol. 63(3), pages 716-732, June.
    21. Francis de Véricourt & Fikri Karaesmen & Yves Dallery, 2002. "Optimal Stock Allocation for a Capacitated Supply System," Management Science, INFORMS, vol. 48(11), pages 1486-1501, November.
    22. Atan, Zümbül & Ahmadi, Taher & Stegehuis, Clara & Kok, Ton de & Adan, Ivo, 2017. "Assemble-to-order systems: A review," European Journal of Operational Research, Elsevier, vol. 261(3), pages 866-879.
    23. Kai Huang, 2014. "Benchmarking non-first-come-first-served component allocation in an assemble-to-order system," Annals of Operations Research, Springer, vol. 223(1), pages 217-237, December.
    24. Albert Y. Ha, 1997. "Stock‐rationing policy for a make‐to‐stock production system with two priority classes and backordering," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(5), pages 457-472, August.
    25. Emre Nadar & Mustafa Akan & Alan Scheller-Wolf, 2016. "Experimental Results Indicating Lattice-Dependent Policies May Be Optimal for General Assemble-To-Order Systems," Production and Operations Management, Production and Operations Management Society, vol. 25(4), pages 647-661, April.
    26. Emre Nadar & Mustafa Akan & Alan Scheller-Wolf, 2014. "Technical Note---Optimal Structural Results for Assemble-to-Order Generalized M -Systems," Operations Research, INFORMS, vol. 62(3), pages 571-579, June.
    27. Mustafa K. Doğru & Martin I. Reiman & Qiong Wang, 2017. "Assemble-to-Order Inventory Management via Stochastic Programming: Chained BOMs and the M-System," Production and Operations Management, Production and Operations Management Society, vol. 26(3), pages 446-468, March.
    28. Yingdong Lu & Jing-Sheng Song & Yao Zhao, 2010. "No-Holdback Allocation Rules for Continuous-Time Assemble-to-Order Systems," Operations Research, INFORMS, vol. 58(3), pages 691-705, June.
    29. Saif Benjaafar & Mohsen ElHafsi, 2006. "Production and Inventory Control of a Single Product Assemble-to-Order System with Multiple Customer Classes," Management Science, INFORMS, vol. 52(12), pages 1896-1912, December.
    30. Gao, Chunyan & Shen, Houcai & Cheng, T.C.E., 2010. "Order-fulfillment performance analysis of an assemble-to-order system with unreliable machines," International Journal of Production Economics, Elsevier, vol. 126(2), pages 341-349, August.
    31. Yao Zhao & David Simchi-Levi, 2006. "Performance Analysis and Evaluation of Assemble-to-Order Systems with Stochastic Sequential Lead Times," Operations Research, INFORMS, vol. 54(4), pages 706-724, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Albrecht, 2021. "Component Allocation in Make-to-stock Assembly Systems," SN Operations Research Forum, Springer, vol. 2(2), pages 1-19, June.
    2. Liu, Baolong & Papier, Felix, 2022. "Remanufacturing of multi-component systems with product substitution," European Journal of Operational Research, Elsevier, vol. 301(3), pages 896-911.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Kok, Ton & Grob, Christopher & Laumanns, Marco & Minner, Stefan & Rambau, Jörg & Schade, Konrad, 2018. "A typology and literature review on stochastic multi-echelon inventory models," European Journal of Operational Research, Elsevier, vol. 269(3), pages 955-983.
    2. Atan, Zümbül & Ahmadi, Taher & Stegehuis, Clara & Kok, Ton de & Adan, Ivo, 2017. "Assemble-to-order systems: A review," European Journal of Operational Research, Elsevier, vol. 261(3), pages 866-879.
    3. ElHafsi, Mohsen & Fang, Jianxin & Camus, Herve, 2018. "Optimal control of a continuous-time W-configuration assemble-to-order system," European Journal of Operational Research, Elsevier, vol. 267(3), pages 917-932.
    4. Albrecht, Martin, 2017. "Optimization of safety stocks in models with an order service level objective or constraint," European Journal of Operational Research, Elsevier, vol. 263(3), pages 900-909.
    5. Karaarslan, Gönül A. & Atan, Zümbül & de Kok, Ton & Kiesmüller, Gudrun P., 2018. "Optimal and heuristic policies for assemble-to-order systems with different review periods," European Journal of Operational Research, Elsevier, vol. 271(1), pages 80-96.
    6. Kai Huang, 2014. "Benchmarking non-first-come-first-served component allocation in an assemble-to-order system," Annals of Operations Research, Springer, vol. 223(1), pages 217-237, December.
    7. ElHafsi, Mohsen & Fang, Jianxin & Hamouda, Essia, 2021. "Optimal production and inventory control of multi-class mixed backorder and lost sales demand class models," European Journal of Operational Research, Elsevier, vol. 291(1), pages 147-161.
    8. Martin Albrecht, 2021. "Component Allocation in Make-to-stock Assembly Systems," SN Operations Research Forum, Springer, vol. 2(2), pages 1-19, June.
    9. Lijian Lu & Jing‐Sheng Song & Hanqin Zhang, 2015. "Optimal and asymptotically optimal policies for assemble‐to‐order n‐ and W‐systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(8), pages 617-645, December.
    10. Willem van Jaarsveld & Alan Scheller-Wolf, 2015. "Optimization of Industrial-Scale Assemble-to-Order Systems," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 544-560, August.
    11. Rahimi-Ghahroodi, S. & Al Hanbali, A. & Vliegen, I.M.H. & Cohen, M.A., 2019. "Joint optimization of spare parts inventory and service engineers staffing with full backlogging," International Journal of Production Economics, Elsevier, vol. 212(C), pages 39-50.
    12. David A. Goldberg & Martin I. Reiman & Qiong Wang, 2021. "A Survey of Recent Progress in the Asymptotic Analysis of Inventory Systems," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1718-1750, June.
    13. Elhafsi, Mohsen & Hamouda, Essia, 2015. "Managing an assemble-to-order system with after sales market for components," European Journal of Operational Research, Elsevier, vol. 242(3), pages 828-841.
    14. Levi DeValve & Saša Pekeč & Yehua Wei, 2020. "A Primal-Dual Approach to Analyzing ATO Systems," Management Science, INFORMS, vol. 66(11), pages 5389-5407, November.
    15. Emre Nadar & Mustafa Akan & Alan Scheller-Wolf, 2014. "Technical Note---Optimal Structural Results for Assemble-to-Order Generalized M -Systems," Operations Research, INFORMS, vol. 62(3), pages 571-579, June.
    16. Cheng, T.C.E. & Gao, Chunyan & Shen, Houcai, 2011. "Production planning and inventory allocation of a single-product assemble-to-order system with failure-prone machines," International Journal of Production Economics, Elsevier, vol. 131(2), pages 604-617, June.
    17. Yingdong Lu & Jing-Sheng Song & Yao Zhao, 2010. "No-Holdback Allocation Rules for Continuous-Time Assemble-to-Order Systems," Operations Research, INFORMS, vol. 58(3), pages 691-705, June.
    18. Yi Yang & Jianan Wang & Youhua Chen & Zhiyuan Chen & Yanchu Liu, 2020. "Optimal procurement strategies for contractual assembly systems with fluctuating procurement price," Annals of Operations Research, Springer, vol. 291(1), pages 1027-1059, August.
    19. van Jaarsveld, Willem & Dollevoet, Twan & Dekker, Rommert, 2015. "Improving spare parts inventory control at a repair shop," Omega, Elsevier, vol. 57(PB), pages 217-229.
    20. Erica L. Plambeck, 2008. "Asymptotically Optimal Control for an Assemble-to-Order System with Capacitated Component Production and Fixed Transport Costs," Operations Research, INFORMS, vol. 56(5), pages 1158-1171, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:286:y:2020:i:1:p:233-249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.