IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v56y2008i3p712-727.html
   My bibliography  Save this article

Relaxations of Weakly Coupled Stochastic Dynamic Programs

Author

Listed:
  • Daniel Adelman

    (Graduate School of Business, University of Chicago, Chicago, Illinois 60637)

  • Adam J. Mersereau

    (Kenan-Flagler Business School, University of North Carolina, Chapel Hill, North Carolina 27599)

Abstract

We consider a broad class of stochastic dynamic programming problems that are amenable to relaxation via decomposition. These problems comprise multiple subproblems that are independent of each other except for a collection of coupling constraints on the action space. We fit an additively separable value function approximation using two techniques, namely, Lagrangian relaxation and the linear programming (LP) approach to approximate dynamic programming. We prove various results comparing the relaxations to each other and to the optimal problem value. We also provide a column generation algorithm for solving the LP-based relaxation to any desired optimality tolerance, and we report on numerical experiments on bandit-like problems. Our results provide insight into the complexity versus quality trade-off when choosing which of these relaxations to implement.

Suggested Citation

  • Daniel Adelman & Adam J. Mersereau, 2008. "Relaxations of Weakly Coupled Stochastic Dynamic Programs," Operations Research, INFORMS, vol. 56(3), pages 712-727, June.
  • Handle: RePEc:inm:oropre:v:56:y:2008:i:3:p:712-727
    DOI: 10.1287/opre.1070.0445
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1070.0445
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1070.0445?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Katerina P. Papadaki & Warren B. Powell, 2003. "An adaptive dynamic programming algorithm for a stochastic multiproduct batch dispatch problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(7), pages 742-769, October.
    2. Marshall L. Fisher, 1981. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 27(1), pages 1-18, January.
    3. Kalyan Talluri & Garrett van Ryzin, 1998. "An Analysis of Bid-Price Controls for Network Revenue Management," Management Science, INFORMS, vol. 44(11-Part-1), pages 1577-1593, November.
    4. Daniela Pucci de Farias & Benjamin Van Roy, 2004. "On Constraint Sampling in the Linear Programming Approach to Approximate Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 462-478, August.
    5. Hugh Everett, 1963. "Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of Resources," Operations Research, INFORMS, vol. 11(3), pages 399-417, June.
    6. Kirk A. Yost & Alan R. Washburn, 2000. "The LP/POMDP marriage: Optimization with imperfect information," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(8), pages 607-619, December.
    7. Dimitris Bertsimas & Adam J. Mersereau, 2007. "A Learning Approach for Interactive Marketing to a Customer Segment," Operations Research, INFORMS, vol. 55(6), pages 1120-1135, December.
    8. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    9. Daniel Adelman, 2004. "A Price-Directed Approach to Stochastic Inventory/Routing," Operations Research, INFORMS, vol. 52(4), pages 499-514, August.
    10. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2002. "The Stochastic Inventory Routing Problem with Direct Deliveries," Transportation Science, INFORMS, vol. 36(1), pages 94-118, February.
    11. D. P. de Farias & B. Van Roy, 2003. "The Linear Programming Approach to Approximate Dynamic Programming," Operations Research, INFORMS, vol. 51(6), pages 850-865, December.
    12. J. P. Aubin & I. Ekeland, 1976. "Estimates of the Duality Gap in Nonconvex Optimization," Mathematics of Operations Research, INFORMS, vol. 1(3), pages 225-245, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laumer, Simon & Barz, Christiane, 2023. "Reductions of non-separable approximate linear programs for network revenue management," European Journal of Operational Research, Elsevier, vol. 309(1), pages 252-270.
    2. Huseyin Topaloglu & Sumit Kunnumkal, 2006. "Approximate dynamic programming methods for an inventory allocation problem under uncertainty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(8), pages 822-841, December.
    3. Thomas W. M. Vossen & Dan Zhang, 2015. "Reductions of Approximate Linear Programs for Network Revenue Management," Operations Research, INFORMS, vol. 63(6), pages 1352-1371, December.
    4. Arts, Joachim, 2017. "A multi-item approach to repairable stocking and expediting in a fluctuating demand environment," European Journal of Operational Research, Elsevier, vol. 256(1), pages 102-115.
    5. Andre P. Calmon & Florin D. Ciocan & Gonzalo Romero, 2021. "Revenue Management with Repeated Customer Interactions," Management Science, INFORMS, vol. 67(5), pages 2944-2963, May.
    6. Selvaprabu Nadarajah & Andre A. Cire, 2020. "Network-Based Approximate Linear Programming for Discrete Optimization," Operations Research, INFORMS, vol. 68(6), pages 1767-1786, November.
    7. Daniel Adelman, 2004. "A Price-Directed Approach to Stochastic Inventory/Routing," Operations Research, INFORMS, vol. 52(4), pages 499-514, August.
    8. Daniel Adelman & Diego Klabjan, 2012. "Computing Near-Optimal Policies in Generalized Joint Replenishment," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 148-164, February.
    9. Qihang Lin & Selvaprabu Nadarajah & Negar Soheili, 2020. "Revisiting Approximate Linear Programming: Constraint-Violation Learning with Applications to Inventory Control and Energy Storage," Management Science, INFORMS, vol. 66(4), pages 1544-1562, April.
    10. Sonntag, Danja R. & Schrotenboer, Albert H. & Kiesmüller, Gudrun P., 2023. "Stochastic inventory routing with time-based shipment consolidation," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1186-1201.
    11. Alejandro Toriello & William B. Haskell & Michael Poremba, 2014. "A Dynamic Traveling Salesman Problem with Stochastic Arc Costs," Operations Research, INFORMS, vol. 62(5), pages 1107-1125, October.
    12. Antoine Sauré & Jonathan Patrick & Martin L. Puterman, 2015. "Simulation-Based Approximate Policy Iteration with Generalized Logistic Functions," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 579-595, August.
    13. Tatsiana Levina & Yuri Levin & Jeff McGill & Mikhail Nediak, 2011. "Network Cargo Capacity Management," Operations Research, INFORMS, vol. 59(4), pages 1008-1023, August.
    14. Daniela Pucci de Farias & Benjamin Van Roy, 2006. "A Cost-Shaping Linear Program for Average-Cost Approximate Dynamic Programming with Performance Guarantees," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 597-620, August.
    15. Daniel Adelman, 2003. "Price-Directed Replenishment of Subsets: Methodology and Its Application to Inventory Routing," Manufacturing & Service Operations Management, INFORMS, vol. 5(4), pages 348-371, May.
    16. Santiago R. Balseiro & David B. Brown & Chen Chen, 2021. "Dynamic Pricing of Relocating Resources in Large Networks," Management Science, INFORMS, vol. 67(7), pages 4075-4094, July.
    17. Ogbe, Emmanuel & Li, Xiang, 2017. "A new cross decomposition method for stochastic mixed-integer linear programming," European Journal of Operational Research, Elsevier, vol. 256(2), pages 487-499.
    18. Ibrahim Muter & Tevfik Aytekin, 2017. "Incorporating Aggregate Diversity in Recommender Systems Using Scalable Optimization Approaches," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 405-421, August.
    19. Matthew S. Maxwell & Mateo Restrepo & Shane G. Henderson & Huseyin Topaloglu, 2010. "Approximate Dynamic Programming for Ambulance Redeployment," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 266-281, May.
    20. Sauré, Antoine & Patrick, Jonathan & Tyldesley, Scott & Puterman, Martin L., 2012. "Dynamic multi-appointment patient scheduling for radiation therapy," European Journal of Operational Research, Elsevier, vol. 223(2), pages 573-584.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:56:y:2008:i:3:p:712-727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.