IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v63y2015i3p716-732.html
   My bibliography  Save this article

Asymptotically Optimal Inventory Control for Assemble-to-Order Systems with Identical Lead Times

Author

Listed:
  • Martin I. Reiman

    (Alcatel-Lucent Bell Labs, Murray Hill, New Jersey 07974)

  • Qiong Wang

    (Industrial and Enterprise Systems Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801)

Abstract

Optimizing multiproduct assemble-to-order (ATO) inventory systems is a long-standing difficult problem. We consider ATO systems with identical component lead times and a general “bill of materials.” We use a related two-stage stochastic program (SP) to set a lower bound on the average inventory cost and develop inventory control policies for the dynamic ATO system using this SP. We apply the first-stage SP optimal solution to specify a base-stock replenishment policy, and the second-stage SP recourse linear program to make allocation decisions. We prove that our policies are asymptotically optimal on the diffusion scale, so the percentage gap between the average cost from its lower bound diminishes to zero as the lead time grows.

Suggested Citation

  • Martin I. Reiman & Qiong Wang, 2015. "Asymptotically Optimal Inventory Control for Assemble-to-Order Systems with Identical Lead Times," Operations Research, INFORMS, vol. 63(3), pages 716-732, June.
  • Handle: RePEc:inm:oropre:v:63:y:2015:i:3:p:716-732
    DOI: 10.1287/opre.2015.1372
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2015.1372
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2015.1372?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yingdong Lu & Jing-Sheng Song, 2005. "Order-Based Cost Optimization in Assemble-to-Order Systems," Operations Research, INFORMS, vol. 53(1), pages 151-169, February.
    2. J. Michael Harrison & Lawrence M. Wein, 1990. "Scheduling Networks of Queues: Heavy Traffic Analysis of a Two-Station Closed Network," Operations Research, INFORMS, vol. 38(6), pages 1052-1064, December.
    3. Yalçin Akçay & Susan H. Xu, 2004. "Joint Inventory Replenishment and Component Allocation Optimization in an Assemble-to-Order System," Management Science, INFORMS, vol. 50(1), pages 99-116, January.
    4. Narendra Agrawal & Morris A. Cohen, 2001. "Optimal material control in an assembly system with component commonality," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(5), pages 409-429, August.
    5. Harrison, J. Michael & Van Mieghem, Jan A., 1999. "Multi-resource investment strategies: Operational hedging under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 113(1), pages 17-29, February.
    6. Paul Zipkin, 2008. "On the Structure of Lost-Sales Inventory Models," Operations Research, INFORMS, vol. 56(4), pages 937-944, August.
    7. Yingdong Lu & Jing-Sheng Song & David D. Yao, 2003. "Order Fill Rate, Leadtime Variability, and Advance Demand Information in an Assemble-to-Order System," Operations Research, INFORMS, vol. 51(2), pages 292-308, April.
    8. Hausman, Warren H. & Lee, Hau L. & Zhang, Alex X., 1998. "Joint demand fulfillment probability in a multi-item inventory system with independent order-up-to policies," European Journal of Operational Research, Elsevier, vol. 109(3), pages 646-659, September.
    9. Mustafa K. Doğru & Martin I. Reiman & Qiong Wang, 2010. "A Stochastic Programming Based Inventory Policy for Assemble-to-Order Systems with Application to the W Model," Operations Research, INFORMS, vol. 58(4-part-1), pages 849-864, August.
    10. Lawrence M. Wein, 1990. "Scheduling Networks of Queues: Heavy Traffic Analysis of a Two-Station Network with Controllable Inputs," Operations Research, INFORMS, vol. 38(6), pages 1065-1078, December.
    11. Alex X. Zhang, 1997. "Demand Fulfillment Rates In An Assembleto‐ Order System With Multiple Products And Dependent Demands," Production and Operations Management, Production and Operations Management Society, vol. 6(3), pages 309-324, September.
    12. Yingdong Lu & Jing-Sheng Song & Yao Zhao, 2010. "No-Holdback Allocation Rules for Continuous-Time Assemble-to-Order Systems," Operations Research, INFORMS, vol. 58(3), pages 691-705, June.
    13. Saif Benjaafar & Mohsen ElHafsi, 2006. "Production and Inventory Control of a Single Product Assemble-to-Order System with Multiple Customer Classes," Management Science, INFORMS, vol. 52(12), pages 1896-1912, December.
    14. Kaj Rosling, 1989. "Optimal Inventory Policies for Assembly Systems Under Random Demands," Operations Research, INFORMS, vol. 37(4), pages 565-579, August.
    15. Erica L. Plambeck & Amy R. Ward, 2006. "Optimal Control of a High-Volume Assemble-to-Order System," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 453-477, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Khaleel Dhaiban, 2022. "Two models of inventory system with stochastic demand and deteriorating items: case study of a local cheese factory," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 78-101, March.
    2. de Kok, Ton & Grob, Christopher & Laumanns, Marco & Minner, Stefan & Rambau, Jörg & Schade, Konrad, 2018. "A typology and literature review on stochastic multi-echelon inventory models," European Journal of Operational Research, Elsevier, vol. 269(3), pages 955-983.
    3. ElHafsi, Mohsen & Fang, Jianxin & Hamouda, Essia, 2020. "A novel decomposition-based method for solving general-product structure assemble-to-order systems," European Journal of Operational Research, Elsevier, vol. 286(1), pages 233-249.
    4. Levi DeValve & Saša Pekeč & Yehua Wei, 2020. "A Primal-Dual Approach to Analyzing ATO Systems," Management Science, INFORMS, vol. 66(11), pages 5389-5407, November.
    5. Xingxing Chen & Jacob Feldman & Seung Hwan Jung & Panos Kouvelis, 2022. "Approximation schemes for the joint inventory selection and online resource allocation problem," Production and Operations Management, Production and Operations Management Society, vol. 31(8), pages 3143-3159, August.
    6. Jinzhi Bu & Xiting Gong & Xiuli Chao, 2023. "Asymptotic Optimality of Base-Stock Policies for Perishable Inventory Systems," Management Science, INFORMS, vol. 69(2), pages 846-864, February.
    7. Karaarslan, Gönül A. & Atan, Zümbül & de Kok, Ton & Kiesmüller, Gudrun P., 2018. "Optimal and heuristic policies for assemble-to-order systems with different review periods," European Journal of Operational Research, Elsevier, vol. 271(1), pages 80-96.
    8. Martin Albrecht, 2021. "Component Allocation in Make-to-stock Assembly Systems," SN Operations Research Forum, Springer, vol. 2(2), pages 1-19, June.
    9. Lijian Lu & Jing‐Sheng Song & Hanqin Zhang, 2015. "Optimal and asymptotically optimal policies for assemble‐to‐order n‐ and W‐systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(8), pages 617-645, December.
    10. Willem van Jaarsveld & Alan Scheller-Wolf, 2015. "Optimization of Industrial-Scale Assemble-to-Order Systems," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 544-560, August.
    11. Albrecht, Martin, 2017. "Optimization of safety stocks in models with an order service level objective or constraint," European Journal of Operational Research, Elsevier, vol. 263(3), pages 900-909.
    12. Atan, Zümbül & Ahmadi, Taher & Stegehuis, Clara & Kok, Ton de & Adan, Ivo, 2017. "Assemble-to-order systems: A review," European Journal of Operational Research, Elsevier, vol. 261(3), pages 866-879.
    13. Xin Chen & Menglong Li, 2021. "Discrete Convex Analysis and Its Applications in Operations: A Survey," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1904-1926, June.
    14. David A. Goldberg & Martin I. Reiman & Qiong Wang, 2021. "A Survey of Recent Progress in the Asymptotic Analysis of Inventory Systems," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1718-1750, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Willem van Jaarsveld & Alan Scheller-Wolf, 2015. "Optimization of Industrial-Scale Assemble-to-Order Systems," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 544-560, August.
    2. Sechan Oh & Karthik Sourirajan & Markus Ettl, 2014. "Joint Pricing and Production Decisions in an Assemble-to-Order System," Manufacturing & Service Operations Management, INFORMS, vol. 16(4), pages 529-543, October.
    3. de Kok, Ton & Grob, Christopher & Laumanns, Marco & Minner, Stefan & Rambau, Jörg & Schade, Konrad, 2018. "A typology and literature review on stochastic multi-echelon inventory models," European Journal of Operational Research, Elsevier, vol. 269(3), pages 955-983.
    4. David A. Goldberg & Martin I. Reiman & Qiong Wang, 2021. "A Survey of Recent Progress in the Asymptotic Analysis of Inventory Systems," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1718-1750, June.
    5. Atan, Zümbül & Ahmadi, Taher & Stegehuis, Clara & Kok, Ton de & Adan, Ivo, 2017. "Assemble-to-order systems: A review," European Journal of Operational Research, Elsevier, vol. 261(3), pages 866-879.
    6. Kai Huang, 2014. "Benchmarking non-first-come-first-served component allocation in an assemble-to-order system," Annals of Operations Research, Springer, vol. 223(1), pages 217-237, December.
    7. Fernando Bernstein & Gregory A. DeCroix & Yulan Wang, 2011. "The Impact of Demand Aggregation Through Delayed Component Allocation in an Assemble-to-Order System," Management Science, INFORMS, vol. 57(6), pages 1154-1171, June.
    8. Lijian Lu & Jing‐Sheng Song & Hanqin Zhang, 2015. "Optimal and asymptotically optimal policies for assemble‐to‐order n‐ and W‐systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(8), pages 617-645, December.
    9. van Jaarsveld, Willem & Dollevoet, Twan & Dekker, Rommert, 2015. "Improving spare parts inventory control at a repair shop," Omega, Elsevier, vol. 57(PB), pages 217-229.
    10. van Jaarsveld, W.L. & Dollevoet, T.A.B., 2011. "Spare parts inventory control for an aircraft component repair shop," Econometric Institute Research Papers EI2011-24, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Yao Zhao & David Simchi-Levi, 2006. "Performance Analysis and Evaluation of Assemble-to-Order Systems with Stochastic Sequential Lead Times," Operations Research, INFORMS, vol. 54(4), pages 706-724, August.
    12. Mustafa K. Doğru & Martin I. Reiman & Qiong Wang, 2010. "A Stochastic Programming Based Inventory Policy for Assemble-to-Order Systems with Application to the W Model," Operations Research, INFORMS, vol. 58(4-part-1), pages 849-864, August.
    13. Yingdong Lu & Jing-Sheng Song & Yao Zhao, 2010. "No-Holdback Allocation Rules for Continuous-Time Assemble-to-Order Systems," Operations Research, INFORMS, vol. 58(3), pages 691-705, June.
    14. Albrecht, Martin, 2014. "Determining near optimal base-stock levels in two-stage general inventory systems," European Journal of Operational Research, Elsevier, vol. 232(2), pages 342-349.
    15. Jing-Sheng Song & Yao Zhao, 2009. "The Value of Component Commonality in a Dynamic Inventory System with Lead Times," Manufacturing & Service Operations Management, INFORMS, vol. 11(3), pages 493-508, March.
    16. Yao Zhao, 2008. "Evaluation and Optimization of Installation Base-Stock Policies in Supply Chains with Compound Poisson Demand," Operations Research, INFORMS, vol. 56(2), pages 437-452, April.
    17. Erica L. Plambeck, 2008. "Asymptotically Optimal Control for an Assemble-to-Order System with Capacitated Component Production and Fixed Transport Costs," Operations Research, INFORMS, vol. 56(5), pages 1158-1171, October.
    18. Albrecht, Martin, 2017. "Optimization of safety stocks in models with an order service level objective or constraint," European Journal of Operational Research, Elsevier, vol. 263(3), pages 900-909.
    19. Jie Chu & Kai Huang, 2020. "Integrating decisions with advance supply information in an assemble‐to‐order system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(1), pages 34-44, February.
    20. Karaarslan, A.G. & Kiesmüller, G.P. & de Kok, A.G., 2013. "Analysis of an assemble-to-order system with different review periods," International Journal of Production Economics, Elsevier, vol. 143(2), pages 335-341.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:63:y:2015:i:3:p:716-732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.