IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v282y2020i3p1115-1126.html
   My bibliography  Save this article

A multi-objective Monte Carlo tree search for forest harvest scheduling

Author

Listed:
  • Neto, Teresa
  • Constantino, Miguel
  • Martins, Isabel
  • Pedroso, João Pedro

Abstract

While the objectives of forest management vary widely and include the protection of resources in protected forests and nature reserves, the primary objective has often been the production of wood products. However, even in this case, forests play a key role in the conservation of living resources. Constraining the areas of clearcuts contributes to this conservation, but if it is too restrictive, a dispersion of small clearcuts across the forest might occur, and forest fragmentation might be a serious ecological problem. Forest fragmentation leads to habitat loss, not only because the forest area is reduced, but also because the core area of the habitats and the connectivity between them decreases. This study presents a Monte Carlo tree search method to solve a bi-objective harvest scheduling problem with constraints on the clearcut area, total habitat area and total core area inside habitats. The two objectives are the maximization of both the net present value and the probability of connectivity index. The method is presented as an approach to assist the decision maker in estimating efficient alternative solutions and the corresponding trade-offs. This approach was tested with instances for forests ranging from some dozens to over a thousand stands and temporal horizons from three to eight periods. In general, multi-objective Monte Carlo tree search was able to find several efficient alternative solutions in a reasonable time, even for medium and large instances.

Suggested Citation

  • Neto, Teresa & Constantino, Miguel & Martins, Isabel & Pedroso, João Pedro, 2020. "A multi-objective Monte Carlo tree search for forest harvest scheduling," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1115-1126.
  • Handle: RePEc:eee:ejores:v:282:y:2020:i:3:p:1115-1126
    DOI: 10.1016/j.ejor.2019.09.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171930791X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.09.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chalmet, L. G. & Lemonidis, L. & Elzinga, D. J., 1986. "An algorithm for the bi-criterion integer programming problem," European Journal of Operational Research, Elsevier, vol. 25(2), pages 292-300, May.
    2. Isabel Martins & Mujing Ye & Miguel Constantino & Maria Conceição Fonseca & Jorge Cadima, 2014. "Modeling target volume flows in forest harvest scheduling subject to maximum area restrictions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 343-362, April.
    3. Marcos Goycoolea & Alan T. Murray & Francisco Barahona & Rafael Epstein & Andrés Weintraub, 2005. "Harvest Scheduling Subject to Maximum Area Restrictions: Exploring Exact Approaches," Operations Research, INFORMS, vol. 53(3), pages 490-500, June.
    4. Martins, Isabel & Constantino, Miguel & Borges, Jose G., 2005. "A column generation approach for solving a non-temporal forest harvest model with spatial structure constraints," European Journal of Operational Research, Elsevier, vol. 161(2), pages 478-498, March.
    5. Huizhen Zhang & Miguel Constantino & André Falcão, 2011. "Modeling forest core area with integer programming," Annals of Operations Research, Springer, vol. 190(1), pages 41-55, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deniz Preil & Michael Krapp, 2022. "Artificial intelligence-based inventory management: a Monte Carlo tree search approach," Annals of Operations Research, Springer, vol. 308(1), pages 415-439, January.
    2. Deniz Preil & Michael Krapp, 2023. "Genetic multi-armed bandits: a reinforcement learning approach for discrete optimization via simulation," Papers 2302.07695, arXiv.org.
    3. Zhe Liu & Shurong Li, 2022. "A numerical method for interval multi-objective mixed-integer optimal control problems based on quantum heuristic algorithm," Annals of Operations Research, Springer, vol. 311(2), pages 853-898, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Constantino, Miguel & Martins, Isabel, 2018. "Branch-and-cut for the forest harvest scheduling subject to clearcut and core area constraints," European Journal of Operational Research, Elsevier, vol. 265(2), pages 723-734.
    2. Isabel Martins & Mujing Ye & Miguel Constantino & Maria Conceição Fonseca & Jorge Cadima, 2014. "Modeling target volume flows in forest harvest scheduling subject to maximum area restrictions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 343-362, April.
    3. Teresa Neto & Miguel Constantino & Isabel Martins & João Pedro Pedroso, 2017. "Forest harvest scheduling with clearcut and core area constraints," Annals of Operations Research, Springer, vol. 258(2), pages 453-478, November.
    4. Könnyű, Nóra & Tóth, Sándor F., 2013. "A cutting plane method for solving harvest scheduling models with area restrictions," European Journal of Operational Research, Elsevier, vol. 228(1), pages 236-248.
    5. Mafakheri, Fereshteh & Nasiri, Fuzhan, 2014. "Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions," Energy Policy, Elsevier, vol. 67(C), pages 116-126.
    6. Isabel Martins & Filipe Alvelos & Miguel Constantino, 2012. "A branch-and-price approach for harvest scheduling subject to maximum area restrictions," Computational Optimization and Applications, Springer, vol. 51(1), pages 363-385, January.
    7. Oğuzhan Ahmet Arık, 2021. "Long-term Plantation and Harvesting Planning for Industrial Plantation Forest Areas," SN Operations Research Forum, Springer, vol. 2(2), pages 1-23, June.
    8. Rodolfo Carvajal & Miguel Constantino & Marcos Goycoolea & Juan Pablo Vielma & Andrés Weintraub, 2013. "Imposing Connectivity Constraints in Forest Planning Models," Operations Research, INFORMS, vol. 61(4), pages 824-836, August.
    9. Miguel Constantino & Isabel Martins & José G. Borges, 2008. "A New Mixed-Integer Programming Model for Harvest Scheduling Subject to Maximum Area Restrictions," Operations Research, INFORMS, vol. 56(3), pages 542-551, June.
    10. Sinha, Ankur & Rämö, Janne & Malo, Pekka & Kallio, Markku & Tahvonen, Olli, 2017. "Optimal management of naturally regenerating uneven-aged forests," European Journal of Operational Research, Elsevier, vol. 256(3), pages 886-900.
    11. Ran Wei & Alan Murray, 2015. "Spatial uncertainty in harvest scheduling," Annals of Operations Research, Springer, vol. 232(1), pages 275-289, September.
    12. T. Gómez & M. Hernández & J. Molina & M. León & E. Aldana & R. Caballero, 2011. "A multiobjective model for forest planning with adjacency constraints," Annals of Operations Research, Springer, vol. 190(1), pages 75-92, October.
    13. Augustynczik, A.L.D. & Arce, J.E. & Silva, A.C.L., 2016. "Aggregating forest harvesting activities in forest plantations through Integer Linear Programming and Goal Programming," Journal of Forest Economics, Elsevier, vol. 24(C), pages 72-81.
    14. Serpil Say{i}n & Panos Kouvelis, 2005. "The Multiobjective Discrete Optimization Problem: A Weighted Min-Max Two-Stage Optimization Approach and a Bicriteria Algorithm," Management Science, INFORMS, vol. 51(10), pages 1572-1581, October.
    15. Hernandez, M. & Gómez, T. & Molina, J. & León, M.A. & Caballero, R., 2014. "Efficiency in forest management: A multiobjective harvest scheduling model," Journal of Forest Economics, Elsevier, vol. 20(3), pages 236-251.
    16. Sune Lauth Gadegaard & Andreas Klose & Lars Relund Nielsen, 2018. "A bi-objective approach to discrete cost-bottleneck location problems," Annals of Operations Research, Springer, vol. 267(1), pages 179-201, August.
    17. Masar Al-Rabeeah & Santosh Kumar & Ali Al-Hasani & Elias Munapo & Andrew Eberhard, 2019. "Bi-objective integer programming analysis based on the characteristic equation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 937-944, October.
    18. Panos Kouvelis & Serpil Sayın, 2006. "Algorithm robust for the bicriteria discrete optimization problem," Annals of Operations Research, Springer, vol. 147(1), pages 71-85, October.
    19. Alves, Maria Joao & Climaco, Joao, 2007. "A review of interactive methods for multiobjective integer and mixed-integer programming," European Journal of Operational Research, Elsevier, vol. 180(1), pages 99-115, July.
    20. Jones, Philip C. & Ohlmann, Jeffrey W., 2008. "Long-range timber supply planning for a vertically integrated paper mill," European Journal of Operational Research, Elsevier, vol. 191(2), pages 558-571, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:282:y:2020:i:3:p:1115-1126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.