IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v53y2005i3p490-500.html
   My bibliography  Save this article

Harvest Scheduling Subject to Maximum Area Restrictions: Exploring Exact Approaches

Author

Listed:
  • Marcos Goycoolea

    (School of Industrial and Systems Engineering, Georgia Institute of Technology, 755 Ferst Drive, Atlanta, Georgia 30332-0205)

  • Alan T. Murray

    (Department of Geography, Ohio State University, Columbus, Ohio 43210)

  • Francisco Barahona

    (IBM Watson Research Center, Yorktown Heights, New York 10598)

  • Rafael Epstein

    (Departamento de Ingeniería Industrial, Universidad de Chile, República 701, Santiago, Chile)

  • Andrés Weintraub

    (Departamento de Ingeniería Industrial, Universidad de Chile, República 701, Santiago, Chile)

Abstract

We consider a spatial problem arising in forest harvesting. For regulatory reasons, blocks harvested should not exceed a certain total area, typically 49 hectares. Traditionally, this problem, called the adjacency problem, has been approached by forming a priori blocks from basic cells of 5 to 25 hectares and solving the resulting mixed-integer program. Superior solutions can be obtained by including the construction of blocks in the decision process. The resulting problem is far more complex combinatorially. We present an exact algorithmic approach that has yielded good results in computational tests. This solution approach is based on determining a strong formulation of the linear programming problem through a clique representation of a projected problem.

Suggested Citation

  • Marcos Goycoolea & Alan T. Murray & Francisco Barahona & Rafael Epstein & Andrés Weintraub, 2005. "Harvest Scheduling Subject to Maximum Area Restrictions: Exploring Exact Approaches," Operations Research, INFORMS, vol. 53(3), pages 490-500, June.
  • Handle: RePEc:inm:oropre:v:53:y:2005:i:3:p:490-500
    DOI: 10.1287/opre.1040.0169
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1040.0169
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1040.0169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. T.M. Barrett & J.K. Gilless, 2000. "Even-aged restrictions with sub-graph adjacency," Annals of Operations Research, Springer, vol. 95(1), pages 159-175, January.
    2. Murray, Alan T. & Church, Richard L., 1997. "Facets for node packing," European Journal of Operational Research, Elsevier, vol. 101(3), pages 598-608, September.
    3. Francisco Barahona & Andrés Weintraub & Rafael Epstein, 1992. "Habitat Dispersion in Forest Planning and the Stable Set Problem," Operations Research, INFORMS, vol. 40(1-supplem), pages 14-21, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matisziw, Timothy C. & Murray, Alan T. & Kim, Changjoo, 2006. "Strategic route extension in transit networks," European Journal of Operational Research, Elsevier, vol. 171(2), pages 661-673, June.
    2. Andres Weintraub P., 2007. "Integer programming in forestry," Annals of Operations Research, Springer, vol. 149(1), pages 209-216, February.
    3. Nabhani, Abbas & Mardaneh, Elham & Sjølie, Hanne K., 2024. "Multi-objective optimization of forest ecosystem services under uncertainty," Ecological Modelling, Elsevier, vol. 494(C).
    4. Nicolas Andalaft & Pablo Andalaft & Monique Guignard & Adrian Magendzo & Alexis Wainer & Andres Weintraub, 2003. "A Problem of Forest Harvesting and Road Building Solved Through Model Strengthening and Lagrangean Relaxation," Operations Research, INFORMS, vol. 51(4), pages 613-628, August.
    5. Brumelle, Shelby & Granot, Daniel & Halme, Merja & Vertinsky, Ilan, 1998. "A tabu search algorithm for finding good forest harvest schedules satisfying green-up constraints," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 408-424, April.
    6. Wu, Qinghua & Hao, Jin-Kao, 2015. "A review on algorithms for maximum clique problems," European Journal of Operational Research, Elsevier, vol. 242(3), pages 693-709.
    7. Martell, David L. & Gunn, Eldon A. & Weintraub, Andres, 1998. "Forest management challenges for operational researchers," European Journal of Operational Research, Elsevier, vol. 104(1), pages 1-17, January.
    8. Murray, Alan T. & Church, Richard L., 1997. "Facets for node packing," European Journal of Operational Research, Elsevier, vol. 101(3), pages 598-608, September.
    9. Niblett, Matthew R. & Church, Richard L., 2015. "The disruptive anti-covering location problem," European Journal of Operational Research, Elsevier, vol. 247(3), pages 764-773.
    10. Borges, Paulo & Eid, Tron & Bergseng, Even, 2014. "Applying simulated annealing using different methods for the neighborhood search in forest planning problems," European Journal of Operational Research, Elsevier, vol. 233(3), pages 700-710.
    11. Alexander Engau & Miguel Anjos & Immanuel Bomze, 2013. "Constraint selection in a build-up interior-point cutting-plane method for solving relaxations of the stable-set problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(1), pages 35-59, August.
    12. Andrew C. Trapp & Oleg A. Prokopyev, 2010. "Solving the Order-Preserving Submatrix Problem via Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 22(3), pages 387-400, August.
    13. Könnyű, Nóra & Tóth, Sándor F., 2013. "A cutting plane method for solving harvest scheduling models with area restrictions," European Journal of Operational Research, Elsevier, vol. 228(1), pages 236-248.
    14. Dorit S. Hochbaum & Anu Pathria, 1998. "Analysis of the greedy approach in problems of maximum k‐coverage," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(6), pages 615-627, September.
    15. Andrés Weintraub & Carlos Romero, 2006. "Operations Research Models and the Management of Agricultural and Forestry Resources: A Review and Comparison," Interfaces, INFORMS, vol. 36(5), pages 446-457, October.
    16. Alan Murray & Hyun Kim, 2008. "Efficient identification of geographic restriction conditions in anti-covering location models using GIS," Letters in Spatial and Resource Sciences, Springer, vol. 1(2), pages 159-169, December.
    17. Samuel Ratick & Brian Meacham & Yuko Aoyama, 2008. "Locating Backup Facilities to Enhance Supply Chain Disaster Resilience," Growth and Change, Wiley Blackwell, vol. 39(4), pages 642-666, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:53:y:2005:i:3:p:490-500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.