IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v190y2011i1p41-5510.1007-s10479-009-0517-4.html
   My bibliography  Save this article

Modeling forest core area with integer programming

Author

Listed:
  • Huizhen Zhang
  • Miguel Constantino
  • André Falcão

Abstract

Abundant and continuous old forest tend to be fragmented into isolated and small patches because of human harvest activities. Dispersive and isolated old forest patches cannot provide abundant interior habitat to wildlife, which is a fatal threat for specific plant communities and wildlife species. In this paper, an Integer Programming model for forest planning is designed to maximize the economical benefit of the forest and to guarantee a minimum area of interior old forest for wildlife habitat, the so-called core area satisfying minimum mature age requirements. The minimum core area constraints, to some degree, can help mitigate the negative impact of harvest activities to divide forest habitat into many small patches. The model is implemented in a commercial Integer Programming solver and it is applied to several hypothetical landscapes. The results show the possibility of incorporating a core area requirement into a forest planning model, and the possibility to obtain solutions within a reasonable computational time. Instances with up to 1600 management units have been solved in seconds to an optimality gap of 1% (0.1% in some cases). Copyright Springer Science+Business Media, LLC 2011

Suggested Citation

  • Huizhen Zhang & Miguel Constantino & André Falcão, 2011. "Modeling forest core area with integer programming," Annals of Operations Research, Springer, vol. 190(1), pages 41-55, October.
  • Handle: RePEc:spr:annopr:v:190:y:2011:i:1:p:41-55:10.1007/s10479-009-0517-4
    DOI: 10.1007/s10479-009-0517-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-009-0517-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-009-0517-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miguel Constantino & Isabel Martins & José G. Borges, 2008. "A New Mixed-Integer Programming Model for Harvest Scheduling Subject to Maximum Area Restrictions," Operations Research, INFORMS, vol. 56(3), pages 542-551, June.
    2. Brumelle, Shelby & Granot, Daniel & Halme, Merja & Vertinsky, Ilan, 1998. "A tabu search algorithm for finding good forest harvest schedules satisfying green-up constraints," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 408-424, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neto, Teresa & Constantino, Miguel & Martins, Isabel & Pedroso, João Pedro, 2020. "A multi-objective Monte Carlo tree search for forest harvest scheduling," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1115-1126.
    2. Augustynczik, Andrey Lessa Derci & Yousefpour, Rasoul & Rodriguez, Luiz Carlos Estraviz & Hanewinkel, Marc, 2018. "Conservation Costs of Retention Forestry and Optimal Habitat Network Selection in Southwestern Germany," Ecological Economics, Elsevier, vol. 148(C), pages 92-102.
    3. Teresa Neto & Miguel Constantino & Isabel Martins & João Pedro Pedroso, 2017. "Forest harvest scheduling with clearcut and core area constraints," Annals of Operations Research, Springer, vol. 258(2), pages 453-478, November.
    4. Sushil Gupta & Hossein Rikhtehgar Berenji & Manish Shukla & Nagesh N. Murthy, 2023. "Opportunities in farming research from an operations management perspective," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1577-1596, June.
    5. Constantino, Miguel & Martins, Isabel, 2018. "Branch-and-cut for the forest harvest scheduling subject to clearcut and core area constraints," European Journal of Operational Research, Elsevier, vol. 265(2), pages 723-734.
    6. Vassiliki Kazana & Angelos Kazaklis & Dimitrios Raptis & Christos Stamatiou, 2020. "A combined multi-criteria approach to assess forest management sustainability: an application to the forests of Eastern Macedonia & Thrace Region in Greece," Annals of Operations Research, Springer, vol. 294(1), pages 321-343, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isabel Martins & Mujing Ye & Miguel Constantino & Maria Conceição Fonseca & Jorge Cadima, 2014. "Modeling target volume flows in forest harvest scheduling subject to maximum area restrictions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 343-362, April.
    2. Sinha, Ankur & Rämö, Janne & Malo, Pekka & Kallio, Markku & Tahvonen, Olli, 2017. "Optimal management of naturally regenerating uneven-aged forests," European Journal of Operational Research, Elsevier, vol. 256(3), pages 886-900.
    3. Ran Wei & Alan Murray, 2015. "Spatial uncertainty in harvest scheduling," Annals of Operations Research, Springer, vol. 232(1), pages 275-289, September.
    4. Viana, Ana & Pinho de Sousa, Jorge, 2000. "Using metaheuristics in multiobjective resource constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 120(2), pages 359-374, January.
    5. Teresa Neto & Miguel Constantino & Isabel Martins & João Pedro Pedroso, 2017. "Forest harvest scheduling with clearcut and core area constraints," Annals of Operations Research, Springer, vol. 258(2), pages 453-478, November.
    6. González-González, José M. & Vázquez-Méndez, Miguel E. & Diéguez-Aranda, Ulises, 2020. "A note on the regularity of a new metric for measuring even-flow in forest planning," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1101-1106.
    7. Augustynczik, Andrey Lessa Derci & Arce, Julio Eduardo & Yousefpour, Rasoul & da Silva, Arinei Carlos Lindbeck, 2016. "Promoting harvesting stands connectivity and its economic implications in Brazilian forest plantations applying integer linear programming and simulated annealing," Forest Policy and Economics, Elsevier, vol. 73(C), pages 120-129.
    8. Belavenutti, Pedro & Ager, Alan A. & Day, Michelle A. & Chung, Woodam, 2022. "Designing forest restoration projects to optimize the application of broadcast burning," Ecological Economics, Elsevier, vol. 201(C).
    9. Bettinger, Pete & Boston, Kevin & Kim, Young-Hwan & Zhu, Jianping, 2007. "Landscape-level optimization using tabu search and stand density-related forest management prescriptions," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1265-1282, January.
    10. Salassi, M. E. & Breaux, J. B. & Naquin, C. J., 2002. "Modeling within-season sugarcane growth for optimal harvest system selection," Agricultural Systems, Elsevier, vol. 73(3), pages 261-278, September.
    11. Könnyű, Nóra & Tóth, Sándor F., 2013. "A cutting plane method for solving harvest scheduling models with area restrictions," European Journal of Operational Research, Elsevier, vol. 228(1), pages 236-248.
    12. Binoti, Daniel Henrique Breda & Binoti, Mayra Luiza Marques da Silva & Leite, Helio Garcia & Gleriani, José Marinaldo & Campos, João Carlos Chagas, 2012. "Regulation of even-aged forest with adjacency constraints," Forest Policy and Economics, Elsevier, vol. 20(C), pages 49-57.
    13. Salassi, Michael E. & Champagne, Lonnie P. & Legendre, Benjamin L., 2000. "Incorporation Of Within-Season Yield Growth Into A Mathematical Programming Sugarcane Harvest Scheduling Model," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 32(3), pages 1-13, December.
    14. Mafakheri, Fereshteh & Nasiri, Fuzhan, 2014. "Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions," Energy Policy, Elsevier, vol. 67(C), pages 116-126.
    15. Isabel Martins & Filipe Alvelos & Miguel Constantino, 2012. "A branch-and-price approach for harvest scheduling subject to maximum area restrictions," Computational Optimization and Applications, Springer, vol. 51(1), pages 363-385, January.
    16. Marshalek, Elaina C. & Ramage, Benjamin S. & Potts, Matthew D., 2014. "Integrating harvest scheduling and reserve design to improve biodiversity conservation," Ecological Modelling, Elsevier, vol. 287(C), pages 27-35.
    17. Rachel St. John & Sándor Tóth, 2015. "Spatially explicit forest harvest scheduling with difference equations," Annals of Operations Research, Springer, vol. 232(1), pages 235-257, September.
    18. Antonio Alonso-Ayuso & Laureano Escudero & Monique Guignard & Martín Quinteros & Andres Weintraub, 2011. "Forestry management under uncertainty," Annals of Operations Research, Springer, vol. 190(1), pages 17-39, October.
    19. Oğuzhan Ahmet Arık, 2021. "Long-term Plantation and Harvesting Planning for Industrial Plantation Forest Areas," SN Operations Research Forum, Springer, vol. 2(2), pages 1-23, June.
    20. Correa, Renata Naoko & Scarpin, Cassius Tadeu & Ferrari, Linamara Smaniotto & Arce, Julio Eduardo, 2020. "Application of relax-and-fix heuristic in the aggregation of stands for tactical forest scheduling," Forest Policy and Economics, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:190:y:2011:i:1:p:41-55:10.1007/s10479-009-0517-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.