IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v258y2017i2d10.1007_s10479-016-2313-2.html
   My bibliography  Save this article

Forest harvest scheduling with clearcut and core area constraints

Author

Listed:
  • Teresa Neto

    (Instituto Politécnico de Viseu)

  • Miguel Constantino

    (Universidade de Lisboa)

  • Isabel Martins

    (Universidade de Lisboa)

  • João Pedro Pedroso

    (Universidade do Porto)

Abstract

Many studies regarding environmental concerns in forest harvest scheduling problems deal with constraints on the maximum clearcut size. However, these constraints tend to disperse harvests across the forest and thus to generate a more fragmented landscape. When a forest is fragmented, the amount of edge increases at the expense of the core area. Highly fragmented forests can neither provide the food, cover, nor the reproduction needs of core-dependent species. This study presents a branch-and-bound procedure designed to find good feasible solutions, in a reasonable time, for forest harvest scheduling problems with constraints on maximum clearcut size and minimum core habitat area. The core area is measured by applying the concept of subregions. In each branch of the branch-and-bound tree, a partial solution leads to two children nodes, corresponding to the cases of harvesting or not a given stand in a given period. Pruning is based on constraint violations or unreachable objective values. The approach was tested with forests ranging from some dozens to more than a thousand stands. In general, branch-and-bound was able to quickly find optimal or good solutions, even for medium/large instances.

Suggested Citation

  • Teresa Neto & Miguel Constantino & Isabel Martins & João Pedro Pedroso, 2017. "Forest harvest scheduling with clearcut and core area constraints," Annals of Operations Research, Springer, vol. 258(2), pages 453-478, November.
  • Handle: RePEc:spr:annopr:v:258:y:2017:i:2:d:10.1007_s10479-016-2313-2
    DOI: 10.1007/s10479-016-2313-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-016-2313-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-016-2313-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miguel Constantino & Isabel Martins & José G. Borges, 2008. "A New Mixed-Integer Programming Model for Harvest Scheduling Subject to Maximum Area Restrictions," Operations Research, INFORMS, vol. 56(3), pages 542-551, June.
    2. Huizhen Zhang & Miguel Constantino & André Falcão, 2011. "Modeling forest core area with integer programming," Annals of Operations Research, Springer, vol. 190(1), pages 41-55, October.
    3. Isabel Martins & Filipe Alvelos & Miguel Constantino, 2012. "A branch-and-price approach for harvest scheduling subject to maximum area restrictions," Computational Optimization and Applications, Springer, vol. 51(1), pages 363-385, January.
    4. Martins, Isabel & Constantino, Miguel & Borges, Jose G., 2005. "A column generation approach for solving a non-temporal forest harvest model with spatial structure constraints," European Journal of Operational Research, Elsevier, vol. 161(2), pages 478-498, March.
    5. Marcos Goycoolea & Alan T. Murray & Francisco Barahona & Rafael Epstein & Andrés Weintraub, 2005. "Harvest Scheduling Subject to Maximum Area Restrictions: Exploring Exact Approaches," Operations Research, INFORMS, vol. 53(3), pages 490-500, June.
    6. Vielma, Juan Pablo & Murray, Alan T. & Ryan, David M. & Weintraub, Andres, 2007. "Improving computational capabilities for addressing volume constraints in forest harvest scheduling problems," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1246-1264, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oğuzhan Ahmet Arık, 2021. "Long-term Plantation and Harvesting Planning for Industrial Plantation Forest Areas," SN Operations Research Forum, Springer, vol. 2(2), pages 1-23, June.
    2. Amalia Utamima & Torsten Reiners & Amir H. Ansaripoor, 2022. "Evolutionary neighborhood discovery algorithm for agricultural routing planning in multiple fields," Annals of Operations Research, Springer, vol. 316(2), pages 955-977, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Constantino, Miguel & Martins, Isabel, 2018. "Branch-and-cut for the forest harvest scheduling subject to clearcut and core area constraints," European Journal of Operational Research, Elsevier, vol. 265(2), pages 723-734.
    2. Isabel Martins & Mujing Ye & Miguel Constantino & Maria Conceição Fonseca & Jorge Cadima, 2014. "Modeling target volume flows in forest harvest scheduling subject to maximum area restrictions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 343-362, April.
    3. Isabel Martins & Filipe Alvelos & Miguel Constantino, 2012. "A branch-and-price approach for harvest scheduling subject to maximum area restrictions," Computational Optimization and Applications, Springer, vol. 51(1), pages 363-385, January.
    4. Rodolfo Carvajal & Miguel Constantino & Marcos Goycoolea & Juan Pablo Vielma & Andrés Weintraub, 2013. "Imposing Connectivity Constraints in Forest Planning Models," Operations Research, INFORMS, vol. 61(4), pages 824-836, August.
    5. Neto, Teresa & Constantino, Miguel & Martins, Isabel & Pedroso, João Pedro, 2020. "A multi-objective Monte Carlo tree search for forest harvest scheduling," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1115-1126.
    6. Könnyű, Nóra & Tóth, Sándor F., 2013. "A cutting plane method for solving harvest scheduling models with area restrictions," European Journal of Operational Research, Elsevier, vol. 228(1), pages 236-248.
    7. Mafakheri, Fereshteh & Nasiri, Fuzhan, 2014. "Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions," Energy Policy, Elsevier, vol. 67(C), pages 116-126.
    8. Miguel Constantino & Isabel Martins & José G. Borges, 2008. "A New Mixed-Integer Programming Model for Harvest Scheduling Subject to Maximum Area Restrictions," Operations Research, INFORMS, vol. 56(3), pages 542-551, June.
    9. Sinha, Ankur & Rämö, Janne & Malo, Pekka & Kallio, Markku & Tahvonen, Olli, 2017. "Optimal management of naturally regenerating uneven-aged forests," European Journal of Operational Research, Elsevier, vol. 256(3), pages 886-900.
    10. Ran Wei & Alan Murray, 2015. "Spatial uncertainty in harvest scheduling," Annals of Operations Research, Springer, vol. 232(1), pages 275-289, September.
    11. Rachel St. John & Sándor Tóth, 2015. "Spatially explicit forest harvest scheduling with difference equations," Annals of Operations Research, Springer, vol. 232(1), pages 235-257, September.
    12. Oğuzhan Ahmet Arık, 2021. "Long-term Plantation and Harvesting Planning for Industrial Plantation Forest Areas," SN Operations Research Forum, Springer, vol. 2(2), pages 1-23, June.
    13. Fernando Veliz & Jean-Paul Watson & Andres Weintraub & Roger Wets & David Woodruff, 2015. "Stochastic optimization models in forest planning: a progressive hedging solution approach," Annals of Operations Research, Springer, vol. 232(1), pages 259-274, September.
    14. T. Gómez & M. Hernández & J. Molina & M. León & E. Aldana & R. Caballero, 2011. "A multiobjective model for forest planning with adjacency constraints," Annals of Operations Research, Springer, vol. 190(1), pages 75-92, October.
    15. Augustynczik, A.L.D. & Arce, J.E. & Silva, A.C.L., 2016. "Aggregating forest harvesting activities in forest plantations through Integer Linear Programming and Goal Programming," Journal of Forest Economics, Elsevier, vol. 24(C), pages 72-81.
    16. Hernandez, M. & Gómez, T. & Molina, J. & León, M.A. & Caballero, R., 2014. "Efficiency in forest management: A multiobjective harvest scheduling model," Journal of Forest Economics, Elsevier, vol. 20(3), pages 236-251.
    17. Augustynczik, Andrey Lessa Derci & Arce, Julio Eduardo & Yousefpour, Rasoul & da Silva, Arinei Carlos Lindbeck, 2016. "Promoting harvesting stands connectivity and its economic implications in Brazilian forest plantations applying integer linear programming and simulated annealing," Forest Policy and Economics, Elsevier, vol. 73(C), pages 120-129.
    18. Belavenutti, Pedro & Ager, Alan A. & Day, Michelle A. & Chung, Woodam, 2022. "Designing forest restoration projects to optimize the application of broadcast burning," Ecological Economics, Elsevier, vol. 201(C).
    19. Jones, Philip C. & Ohlmann, Jeffrey W., 2008. "Long-range timber supply planning for a vertically integrated paper mill," European Journal of Operational Research, Elsevier, vol. 191(2), pages 558-571, December.
    20. Guillermo Durán & Rafael Epstein & Cristian Martinez & Gonzalo Andres Zamorano, 2011. "Quantitative Methods for a New Configuration of Territorial Units in a Chilean Government Agency Tender Process," Interfaces, INFORMS, vol. 41(3), pages 263-277, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:258:y:2017:i:2:d:10.1007_s10479-016-2313-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.