IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v282y2020i1p188-200.html
   My bibliography  Save this article

Competitive location and pricing on a line with metric transportation costs

Author

Listed:
  • Arbib, Claudio
  • Pınar, Mustafa Ç.
  • Tonelli, Matteo

Abstract

Consider a three-level non-capacitated location/pricing problem: a firm first decides which facilities to open, out of a finite set of candidate sites, and sets service prices with the aim of revenue maximization; then a second firm makes the same decisions after checking competing offers; finally, customers make individual decisions trying to minimize costs that include both purchase and transportation. A restricted two-level problem can be defined to model an optimal reaction of the second firm to known decision of the first.

Suggested Citation

  • Arbib, Claudio & Pınar, Mustafa Ç. & Tonelli, Matteo, 2020. "Competitive location and pricing on a line with metric transportation costs," European Journal of Operational Research, Elsevier, vol. 282(1), pages 188-200.
  • Handle: RePEc:eee:ejores:v:282:y:2020:i:1:p:188-200
    DOI: 10.1016/j.ejor.2019.08.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171930712X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.08.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Berglund & Changhyun Kwon, 2014. "Solving a Location Problem of a Stackelberg Firm Competing with Cournot-Nash Firms," Networks and Spatial Economics, Springer, vol. 14(1), pages 117-132, March.
    2. Gentile, José & Alves Pessoa, Artur & Poss, Michael & Costa Roboredo, Marcos, 2018. "Integer programming formulations for three sequential discrete competitive location problems with foresight," European Journal of Operational Research, Elsevier, vol. 265(3), pages 872-881.
    3. Boglárka G.-Tóth & Kristóf Kovács, 2016. "Solving a Huff-like Stackelberg location problem on networks," Journal of Global Optimization, Springer, vol. 64(2), pages 233-247, February.
    4. Kathrin Fischer, 2002. "Sequential Discrete p-Facility Models for Competitive Location Planning," Annals of Operations Research, Springer, vol. 111(1), pages 253-270, March.
    5. María García Pérez & Blas Pelegrín, 2003. "All Stackelberg Location Equilibria in the Hotelling's Duopoly Model on a Tree with Parametric Prices," Annals of Operations Research, Springer, vol. 122(1), pages 177-192, September.
    6. Yves Crama & Pierre Hansen & Brigitte Jaumard, 1995. "Complexity of Product Positioning and Ball Intersection Problems," Mathematics of Operations Research, INFORMS, vol. 20(4), pages 885-894, November.
    7. Kress, Dominik & Pesch, Erwin, 2012. "Sequential competitive location on networks," European Journal of Operational Research, Elsevier, vol. 217(3), pages 483-499.
    8. Eiselt, H. A. & Laporte, Gilbert, 1997. "Sequential location problems," European Journal of Operational Research, Elsevier, vol. 96(2), pages 217-231, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nala Alahmari & Rashid Mehmood & Ahmed Alzahrani & Tan Yigitcanlar & Juan M. Corchado, 2023. "Autonomous and Sustainable Service Economies: Data-Driven Optimization of Design and Operations through Discovery of Multi-Perspective Parameters," Sustainability, MDPI, vol. 15(22), pages 1-44, November.
    2. Lin, Yun Hui & Tian, Qingyun, 2023. "Facility location and pricing problem: Discretized mill price and exact algorithms," European Journal of Operational Research, Elsevier, vol. 308(2), pages 568-580.
    3. Danzhu Wang & Lingyun Zhou & Huimin Zhang & Xiaokang Liang, 2021. "A Bi-Level Model for Green Freight Transportation Pricing Strategy Considering Enterprise Profit and Carbon Emissions," Sustainability, MDPI, vol. 13(12), pages 1-20, June.
    4. Schlicher, Loe & Lurkin, Virginie, 2022. "Stable allocations for choice-based collaborative price setting," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1242-1254.
    5. Keqiang Wang & Guoxiang Li & Hongmei Liu, 2020. "Location choice of industrial land reduction in Metropolitan Area: Evidence from Shanghai in China," Growth and Change, Wiley Blackwell, vol. 51(4), pages 1837-1859, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang Li & Tianyu Zhang & Liang Wang & Hongguang Ma & Xiande Zhao, 2022. "A minimax regret model for the leader–follower facility location problem," Annals of Operations Research, Springer, vol. 309(2), pages 861-882, February.
    2. Gentile, José & Alves Pessoa, Artur & Poss, Michael & Costa Roboredo, Marcos, 2018. "Integer programming formulations for three sequential discrete competitive location problems with foresight," European Journal of Operational Research, Elsevier, vol. 265(3), pages 872-881.
    3. Dolores R. Santos-Peñate & Clara M. Campos-Rodríguez & José A. Moreno-Pérez, 2020. "A Kernel Search Matheuristic to Solve The Discrete Leader-Follower Location Problem," Networks and Spatial Economics, Springer, vol. 20(1), pages 73-98, March.
    4. Buechel, Berno & Roehl, Nils, 2015. "Robust equilibria in location games," European Journal of Operational Research, Elsevier, vol. 240(2), pages 505-517.
    5. Zhang, Ying & Snyder, Lawrence V. & Ralphs, Ted K. & Xue, Zhaojie, 2016. "The competitive facility location problem under disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 453-473.
    6. Florensa, Carlos & Garcia-Herreros, Pablo & Misra, Pratik & Arslan, Erdem & Mehta, Sanjay & Grossmann, Ignacio E., 2017. "Capacity planning with competitive decision-makers: Trilevel MILP formulation, degeneracy, and solution approaches," European Journal of Operational Research, Elsevier, vol. 262(2), pages 449-463.
    7. Roboredo, Marcos Costa & Pessoa, Artur Alves, 2013. "A branch-and-cut algorithm for the discrete (r∣p)-centroid problem," European Journal of Operational Research, Elsevier, vol. 224(1), pages 101-109.
    8. Drezner, Zvi & Eiselt, H.A., 2024. "Competitive location models: A review," European Journal of Operational Research, Elsevier, vol. 316(1), pages 5-18.
    9. Küçükaydin, Hande & Aras, Necati & Kuban AltInel, I., 2011. "Competitive facility location problem with attractiveness adjustment of the follower: A bilevel programming model and its solution," European Journal of Operational Research, Elsevier, vol. 208(3), pages 206-220, February.
    10. J. Redondo & J. Fernández & I. García & P. Ortigosa, 2010. "Heuristics for the facility location and design (1|1)-centroid problem on the plane," Computational Optimization and Applications, Springer, vol. 45(1), pages 111-141, January.
    11. Godinho, Pedro & Dias, Joana, 2013. "Two-player simultaneous location game: Preferential rights and overbidding," European Journal of Operational Research, Elsevier, vol. 229(3), pages 663-672.
    12. Matsui, Kenji, 2019. "A supply chain member should set its margin later if another member's cost is highly uncertain," European Journal of Operational Research, Elsevier, vol. 275(1), pages 127-138.
    13. Lin, Yun Hui & Wang, Yuan & Lee, Loo Hay & Chew, Ek Peng, 2022. "Omnichannel facility location and fulfillment optimization," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 187-209.
    14. Eiselt, H.A. & Marianov, Vladimir, 2020. "Maximizing political vote in multiple districts," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    15. Tolga H. Seyhan & Lawrence V. Snyder & Ying Zhang, 2018. "A New Heuristic Formulation for a Competitive Maximal Covering Location Problem," Transportation Science, INFORMS, vol. 52(5), pages 1156-1173, October.
    16. Martha-Selene Casas-Ramírez & José-Fernando Camacho-Vallejo & Juan A. Díaz & Dolores E. Luna, 2020. "A bi-level maximal covering location problem," Operational Research, Springer, vol. 20(2), pages 827-855, June.
    17. Mahmutogullari, Ali Irfan & Kara, Bahar Y., 2016. "Hub location under competition," European Journal of Operational Research, Elsevier, vol. 250(1), pages 214-225.
    18. Vladimir Marianov & H. A. Eiselt & Armin Lüer-Villagra, 2020. "The Follower Competitive Location Problem with Comparison-Shopping," Networks and Spatial Economics, Springer, vol. 20(2), pages 367-393, June.
    19. Pelegrín, Blas & Fernández, Pascual & Dolores García Pérez, María & Cano Hernández, Saúl, 2012. "On the location of new facilities for chain expansion under delivered pricing," Omega, Elsevier, vol. 40(2), pages 149-158, April.
    20. Vyacheslav Kalashnikov & Vladimir Bulavsky & Vitaliy Kalashnikov & Nataliya Kalashnykova, 2014. "Structure of demand and consistent conjectural variations equilibrium (CCVE) in a mixed oligopoly model," Annals of Operations Research, Springer, vol. 217(1), pages 281-297, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:282:y:2020:i:1:p:188-200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.